- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bauer, Ulrike (2)
-
Armitage, David (1)
-
Fukushima, Kenji (1)
-
Gaume, Laurence (1)
-
Gilbert, Kadeem J (1)
-
Lin, Qianshi (1)
-
Liu, Sukuan (1)
-
Love, Rachel (1)
-
Martin-Eberhardt, Sylvie (1)
-
Millett, Jonathan (1)
-
Müller, Ulrike K (1)
-
Poppinga, Simon (1)
-
Renner, Tanya (1)
-
Scharmann, Mathias (1)
-
Thorogood, Chris (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundLeaf economics theory holds that physiological constraints to photosynthesis have a role in the coordinated evolution of multiple leaf traits, an idea that can be extended to carnivorous plants occupying a particular trait space that is constrained by key costs and benefits. Pitcher traps are modified leaves that may face steep photosynthetic costs: a high-volume, three-dimensional tubular structure may be less efficient than a flat lamina. While past research has investigated the photosynthetic costs of pitchers, the exact suite of constraints shaping pitcher trait variation remain under-explored, including constraints to carnivorous function. ScopeIn this review, we describe various constraints arising from the dual photosynthetic and carnivorous functions of pitchers arising from developmental, functional, budgetary and environmental factors. In addition, we identify the data required to establish the leaf economics spectrum (LES) for carnivorous pitcher plants (CPPs), and – owing to the multifunctional roles of pitcher leaves – discuss difficulties in placing pitchers onto existing frameworks. ConclusionBecause pitcher traps serve multiple functions, both photosynthesis and nutrient acquisition (carnivory), they are difficult to place in the context of the LES, especially in light of a current lack of trait data. We describe a spectrum across the independent CPP lineages in approaches to balancing carnivory–photosynthesis tradeoffs. Future efforts to collect relevant data can clarify the forces that shape observed pitcher trait variation, and increase understanding of principles that may be ultimately generalized to other plants.more » « lessFree, publicly-accessible full text available April 12, 2026
-
Bauer, Ulrike; Poppinga, Simon; Müller, Ulrike K (, Integrative and Comparative Biology)null (Ed.)Abstract Synopsis Interdisciplinary research can have strong and surprising synergistic effects, leading to rapid knowledge gains. Equally important, it can help to reintegrate fragmented fields across increasingly isolated specialist sub-disciplines. However, the lack of a common identifier for research “in between fields” can make it difficult to find relevant research outputs and network effectively. We illustrate and address this issue for the emerging interdisciplinary hotspot of “mechanical ecology,” which we define here as the intersection of quantitative biomechanics and field ecology at the organism level. We show that an integrative approach crucially advances our understanding in both disciplines by (1) putting biomechanical mechanisms into a biologically meaningful ecological context and (2) addressing the largely neglected influence of mechanical factors in organismal and behavioral ecology. We call for the foundation of knowledge exchange platforms such as meeting symposia, special issues in journals, and focus groups dedicated to mechanical ecology.more » « less
An official website of the United States government
