Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Millions of years of evolution have allowed animals to develop unusual locomotion capabilities. A striking example is the legless-jumping of click beetles and trap-jaw ants, which jump more than 10 times their body length. Their delicate musculoskeletal system amplifies their muscles’ power. It is challenging to engineer insect-scale jumpers that use onboard actuators for both elastic energy storage and power amplification. Typical jumpers require a combination of at least two actuator mechanisms for elastic energy storage and jump triggering, leading to complex designs having many parts. Here, we report the new concept of dynamic buckling cascading, in which a single unidirectional actuation stroke drives an elastic beam through a sequence of energy-storing buckling modes automatically followed by spontaneous impulsive snapping at a critical triggering threshold. Integrating this cascade in a robot enables jumping with unidirectional muscles and power amplification (JUMPA). These JUMPA systems use a single lightweight mechanism for energy storage and release with a mass of 1.6 g and 2 cm length and jump up to 0.9 m, 40 times their body length. They jump repeatedly by reengaging the latch and using coiled artificial muscles to restore elastic energy. The robots reach their performance limits guided by theoretical analysis of snap-through and momentum exchange during ground collision. These jumpers reach the energy densities typical of the best macroscale jumping robots, while also matching the rapid escape times of jumping insects, thus demonstrating the path toward future applications including proximity sensing, inspection, and search and rescue.more » « less
-
Polymer matrix composites have high strengths in tension. However, their compressive strengths are much lower than their tensile strengths due to their weak fiber/matrix interfacial shear strengths. We recently developed a new approach to fabricate composites by overwrapping individual carbon fibers or fiber tows with a carbon nanotube sheet and subsequently impregnate them into a matrix to enhance the interfacial shear strengths without degrading the tensile strengths of the carbon fibers. In this study, a theoretical analysis is conducted to identify the appropriate thickness of the nanocomposite interphase region formed by carbon nanotubes embedded in a matrix. Fibers are modeled as an anisotropic elastic material, and the nanocomposite interphase region and the matrix are considered as isotropic. A microbuckling problem is solved for the unidirectional composite under compression. The analytical solution is compared with finite element simulations for verification. It is determined that the critical load at the onset of buckling is lower in an anisotropic carbon fiber composite than in an isotropic fibfer composite due to lower transverse properties in the fibers. An optimal thickness for nanocomposite interphase region is determined, and this finding provides a guidance for the manufacture of composites using aligned carbon nanotubes as fillers in the nanocomposite interphase region.more » « less
-
Higher-efficiency, lower-cost refrigeration is needed for both large- and small-scale cooling. Refrigerators using entropy changes during cycles of stretching or hydrostatic compression of a solid are possible alternatives to the vapor-compression fridges found in homes. We show that high cooling results from twist changes for twisted, coiled, or supercoiled fibers, including those of natural rubber, nickel titanium, and polyethylene fishing line. Using opposite chiralities of twist and coiling produces supercoiled natural rubber fibers and coiled fishing line fibers that cool when stretched. A demonstrated twist-based device for cooling flowing water provides high cooling energy and device efficiency. Mechanical calculations describe the axial and spring-index dependencies of twist-enhanced cooling and its origin in a phase transformation for polyethylene fibers.more » « less