skip to main content

Search for: All records

Creators/Authors contains: "Baum, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 3C 186, a radio-loud quasar at z = 1.0685, was previously reported to have both velocity and spatial offsets from its host galaxy, and has been considered as a promising candidate for a gravitational wave recoiling black hole triggered by a black hole merger. Another possible scenario is that 3C 186 is in an ongoing galaxy merger, exhibiting a temporary displacement. In this study, we present analyses of new deep images from the Hubble Space Telescope WFC3-IR and Advanced Camera for Surveys, aiming to characterize the host galaxy and test this alternative scenario. We carefully measure the light-weighted center of the host and reveal a significant spatial offset from the quasar core (11.1 ± 0.1 kpc). The direction of the confirmed offset aligns almost perpendicularly to the radio jet. We do not find evidence of a recent merger, such as a young starburst in disturbed outskirts, but only marginal light concentration in F160W at ∼30 kpc. The host consists of mature (≳200 Myr) stellar populations and one compact star-forming region. We compare with hydrodynamical simulations and find that those observed features are consistently seen in late-stage merger remnants. Taken together, those pieces of evidence indicate that the system ismore »not an ongoing/young merger remnant, suggesting that the recoiling black hole scenario is still a plausible explanation for the puzzling nature of 3C 186.« less
    Free, publicly-accessible full text available June 1, 2023
  2. This whitepaper focuses on the astrophysical systematics which are encountered in dark matter searches. Oftentimes in indirect and also in direct dark matter searches, astrophysical systematics are a major limiting factor to sensitivity to dark matter. Just as there are many forms of dark matter searches, there are many forms of backgrounds. We attempt to cover the major systematics arising in dark matter searches using photons -- radio and gamma rays -- to cosmic rays, neutrinos and gravitational waves. Examples include astrophysical sources of cosmic messengers and their interactions which can mimic dark matter signatures. In turn, these depend on commensurate studies in understanding the cosmic environment -- gas distributions, magnetic field configurations -- as well as relevant nuclear astrophysics. We also cover the astrophysics governing celestial bodies and galaxies used to probe dark matter, from black holes to dwarf galaxies. Finally, we cover astrophysical backgrounds related to probing the dark matter distribution and kinematics, which impact a wide range of dark matter studies. In the future, the rise of multi-messenger astronomy, and novel analysis methods to exploit it for dark matter, will offer various strategic ways to continue to enhance our understanding of astrophysical backgrounds to deliver improved sensitivitymore »to dark matter.« less
    Free, publicly-accessible full text available March 13, 2023
  3. Context. Active galactic nuclei (AGN) are thought to be intimately connected with their host galaxies through feeding and feedback processes. A strong coupling is predicted and supported by cosmological simulations of galaxy formation, but the details of the physical mechanisms are still observationally unconstrained. Aims. Galaxies are complex systems of stars and a multiphase interstellar medium (ISM). A spatially resolved multiwavelength survey is required to map the interaction of AGN with their host galaxies on different spatial scales and different phases of the ISM. The goal of the Close AGN Reference Survey (CARS) is to obtain the necessary spatially resolved multiwavelength observations for an unbiased sample of local unobscured luminous AGN. Methods. We present the overall CARS survey design and the associated wide-field optical integral-field unit (IFU) spectroscopy for all 41 CARS targets at z  < 0.06 randomly selected from the Hamburg/ESO survey of luminous unobscured AGN. This data set provides the backbone of the CARS survey and allows us to characterize host galaxy morphologies, AGN parameters, precise systemic redshifts, and ionized gas distributions including excitation conditions, kinematics, and metallicities in unprecedented detail. Results. We focus our study on the size of the extended narrow-line region (ENLR) which has been traditionallymore »connected to AGN luminosity. Given the large scatter in the ENLR size–luminosity relation, we performed a large parameter search to identify potentially more fundamental relations. Remarkably, we identified the strongest correlation between the maximum projected ENLR size and the black hole mass, consistent with an R ENLR,max ∼ M BH 0.5 relationship. We interpret the maximum ENLR size as a timescale indicator of a single black hole (BH) radiative-efficient accretion episode for which we inferred 〈log( t AGN /[yr])〉 = (0.45 ± 0.08)log( M BH /[ M ⊙ ]) + 1.78 −0.67 +0.54 using forward modeling. The extrapolation of our inferred relation toward higher BH masses is consistent with an independent lifetime estimate from the He  II proximity zones around luminous AGN at z  ∼ 3. Conclusions. While our proposed link between the BH mass and AGN lifetime might be a secondary correlation itself or impacted by unknown biases, it has a few relevant implications if confirmed. For example, the famous AGN Eigenvector 1 parameter space may be partially explained by the range in AGN lifetimes. Also, the lack of observational evidence for negative AGN feedback on star formation can be explained by such timescale effects. Further observational tests are required to confirm or rule out our BH mass dependent AGN lifetime hypothesis.« less
    Free, publicly-accessible full text available March 1, 2023
  4. Representational Similarity Analysis (RSA) is a powerful tool for linking brain activity patterns to cognitive processes via similarity, allowing researchers to identify the neural substrates of different cognitive levels of representation. However, the ability to map between levels of representation and brain activity using similarity depends on underlying assumptions about the dynamics of cognitive processing. To demonstrate this point, we present three toy models that make different assumptions about the interactivity within the reading system, (1) discrete, feedforward, (2) cascading, feedforward and (3) fully interactive. With the temporal resolution of fMRI, only the discrete, feedforward model provides a straightforward mapping between activation similarity and level of representation. These simulations indicate the need for a cautious interpretation of RSA results, especially with processes that are highly interactive and with neuroimaging methods that have low temporal resolution. The study further suggests a role for fully-fleshed out computational models in RSA analyses.
  5. ABSTRACT We present Atacama Large Millimetre/submillimetre Array observations of the brightest cluster galaxy Hydra-A, a nearby (z = 0.054) giant elliptical galaxy with powerful and extended radio jets. The observations reveal CO(1−0), CO(2–1), 13CO(2–1), CN(2–1), SiO(5–4), HCO+(1–0), HCO+(2–1), HCN(1–0), HCN(2–1), HNC(1–0), and H2CO(3–2) absorption lines against the galaxy’s bright and compact active galactic nucleus. These absorption features are due to at least 12 individual molecular clouds that lie close to the centre of the galaxy and have velocities of approximately −50 to +10 km s−1 relative to its recession velocity, where positive values correspond to inward motion. The absorption profiles are evidence of a clumpy interstellar medium within brightest cluster galaxies composed of clouds with similar column densities, velocity dispersions, and excitation temperatures to those found at radii of several kpc in the Milky Way. We also show potential variation in a ∼10 km s−1 wide section of the absorption profile over a 2 yr time-scale, most likely caused by relativistic motions in the hot spots of the continuum source that change the background illumination of the absorbing clouds.