skip to main content

Search for: All records

Creators/Authors contains: "Baumbach, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available March 1, 2025
  3. Free, publicly-accessible full text available December 1, 2024
  4. For some intermetallic compounds containing lanthanides, structural transitions can result in intermediate electronic states between trivalency and tetravalency; however, this is rarely observed for praseodymium compounds. The dominant trivalency of praseodymium limits potential discoveries of emergent quantum states in itinerant 4f1systems accessible using Pr4+-based compounds. Here, we use in situ powder x-ray diffraction and in situ electron energy-loss spectroscopy (EELS) to identify an intermetallic example of a dominantly Pr4+state in the polymorphic system Pr2Co3Ge5. The structure-valence transition from a nearly full Pr4+electronic state to a typical Pr3+state shows the potential of Pr-based intermetallic compounds to host valence-unstable states and provides an opportunity to discover previously unknown quantum phenomena. In addition, this work emphasizes the need for complementary techniques like EELS when evaluating the magnetic and electronic properties of Pr intermetallic systems to reveal details easily overlooked when relying on bulk magnetic measurements alone.

    more » « less
    Free, publicly-accessible full text available January 26, 2025
  5. Free, publicly-accessible full text available November 6, 2024
  6. Delocalized−localized electron interactions are central to strongly correlated electron phenomena. Here, we study the Kondo effect, a prototypical strongly correlated phenomena, in a tunable fashion using gold nanostructures (nanoparticle, NP, and nanoshell, NS) + molecule cross-linkers (butanedithiol, BDT). NP films exhibit hallmark signatures of the Kondo effect, including (1) a log temperature resistance upturn as temperature decreases in a metallic regime, and (2) zero-bias conductance peaks (ZBCPs) that are well fit by a Frota function near a percolation insulator transition, previously used to model Kondo peaks observed using tunnel junctions. Remarkably, NP + NS films exhibit ZBCPs that persist to >220 K, i.e., >10-fold higher than that in NP films. Magnetic measurements reveal that moments in NP powders align, and in NS powders, they antialign at low temperatures. Based on these observations, we propose a mechanism in which varying such material nanobuilding blocks can modify electron−electron interactions to such a large degree. 
    more » « less