skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baumgardner, Aaron W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract All populations are affected by multiple environmental drivers, including climatic drivers such as temperature or precipitation and biotic drivers such as herbivory or mutualisms. The relative response of a population to each driver is critical to prioritizing threat mitigation for conservation and to understanding whether climatic or biotic drivers most strongly affect fitness. However, the importance of different drivers can vary dramatically across species and across populations of the same species. Theory suggests that the response to climatic versus biotic drivers can be affected by both the species' fundamental niche breadth and the latitude of the population at which the response is measured. However, we have few tests of how these two factors affect relative response to drivers separately, let alone tests of how niche breadth and latitude together influence responses. Here, we use a meta‐analysis of published studies on population response to climatic and biotic drivers in terrestrial plants, combined with estimates of climatic niche breadth and position within climatic niche derived from herbarium records, to show that species' niche breadth is the primary determinant of response to climatic versus biotic drivers. Namely, we find that response to climatic drivers changes only minimally with increasing niche breadth, while response to biotic drivers increases with niche breadth. We see similar relationships when considering range size instead of niche breadth. Surprisingly, we find no effects of latitude on the relative effect of climatic versus biotic drivers. Our work suggests that populations of species with small and large ranges experience similar extirpation risks due to the negative impacts of climate change. By contrast, populations of species with large (but not small) ranges may be highly susceptible to changes in densities or distributions of interacting species. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026