skip to main content


Search for: All records

Creators/Authors contains: "Baumgart, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc>

    We extend the Effective Field Theory of Heavy Dark Matter to arbitrary odd representations of SU(2) and incorporate the effects of bound states. This formalism is then deployed to compute the gamma-ray spectrum for a5of SU(2): quintuplet dark matter. Except at isolated values of the quintuplet mass, the bound state contribution to hard photons with energy near the dark-matter mass is at the level of a few percent compared to that from direct annihilation. Further, compared to smaller representations, such as the triplet wino, the quintuplet can exhibit a strong variation in the shape of the spectrum as a function of mass. Using our results, we forecast the fate of the thermal quintuplet, which has a mass of ~13.6 TeV. We find that existing H.E.S.S. data should be able to significantly test the scenario, however, the final word on this canonical model of minimal dark matter will likely be left to the Cherenkov Telescope Array (CTA).

     
    more » « less
  2. Abstract For decades, searches for electroweak-scale dark matter (DM) have been performed without a definitive detection. This lack of success may hint that DM searches have focused on the wrong mass range. A proposed candidate beyond the canonical parameter space is ultraheavy DM (UHDM). In this work, we consider indirect UHDM annihilation searches for masses between 30 TeV and 30 PeV—extending well beyond the unitarity limit at ∼100 TeV—and discuss the basic requirements for DM models in this regime. We explore the feasibility of detecting the annihilation signature, and the expected reach for UHDM with current and future very-high-energy (VHE; >100 GeV) γ -ray observatories. Specifically, we focus on three reference instruments: two Imaging Atmospheric Cherenkov Telescope arrays, modeled on VERITAS and CTA-North, and one extended air shower array, motivated by HAWC. With reasonable assumptions on the instrument response functions and background rate, we find a set of UHDM parameters (mass and cross section) for which a γ -ray signature can be detected by the aforementioned observatories. We further compute the expected upper limits for each experiment. With realistic exposure times, the three instruments can probe DM across a wide mass range. At the lower end, it can still have a point-like cross section, while at higher masses the DM could have a geometric cross section, indicative of compositeness. 
    more » « less
  3. null (Ed.)
    A bstract In-In perturbation theory is a vital tool for cosmology and nonequilibrium physics. Here, we reconcile an apparent conflict between two of its important aspects with particular relevance to De Sitter/inflationary contexts: (i) the need to slightly deform unitary time evolution with an iϵ prescription that projects the free (“Bunch-Davies”) vacuum onto the interacting vacuum and renders vertex integrals well-defined, and (ii) Weinberg’s “nested commutator” reformulation of in-in perturbation theory which makes manifest the constraints of causality within expectation values of local operators, assuming exact unitarity. We show that a modified iϵ prescription maintains the exact unitarity on which the derivation of (ii) rests, while nontrivially agreeing with (i) to all orders of perturbation theory. 
    more » « less