skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bazan, Guillermo C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conjugated polyelectrolytes (CPEs), comprised of conjugated backbones and pendant ionic functionalities, are versatile organic materials with diverse applications. However, the myriad of possible molecular structures of CPEs render traditional, trial-and-error materials discovery strategy impractical. Here, we tackle this problem using a data-centric approach by incorporating machine learning with high-throughput first-principles calculations. We systematically examine how key materials properties depend on individual structural components of CPEs and from which the structure–property relationships are established. By means of machine learning, we uncover structural features crucial to the CPE properties, and these features are then used as descriptors in the machine learning to predict the properties of unknown CPEs. Lastly, we discover promising CPEs as hole transport materials in halide perovskite-based optoelectronic devices and as photocatalysts for water splitting. Our work could accelerate the discovery of CPEs for optoelectronic and photocatalytic applications. 
    more » « less
  2. Abstract A single‐crystal X‐ray study of a fullerene‐imidazole adduct at nine temperatures (80 K≤T≤480 K), accompanied by energy calculations, strongly suggested thermal motion of the C60moiety with respect to the imidazolium heterocycle. Analysis of the anisotropic displacement parameters, calculations of frequencies, and the refinement of disorder models for the crystal at four temperatures (230 K≤T≤380 K) lead to the conclusion that the rotator is moving at all temperatures. The rotation barrier is low, with one preferred crystallographic site and several other energy minima. 
    more » « less
  3. null (Ed.)