skip to main content

Search for: All records

Creators/Authors contains: "Beacom, J. F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We report on the search for electromagnetic counterparts to the nine gravitational-wave events with a >60 per cent probability of containing a neutron star during the third observing run (O3) of the Laser Interferometer Gravitational-Wave Observatory (LIGO)–Virgo Collaboration (LVC) with the All-Sky Automated Survey for SuperNovae (ASAS-SN). No optical counterparts associated with a gravitational-wave event were found. However, thanks to its network of telescopes, the average area visible to at least one ASAS-SN site during the first 10 h after the trigger contained ∼30 per cent of the integrated source location probability. Through a combination of normal operations and target-of-opportunity observations, ASAS-SN observations of the highest probability fields began within 1 h of the trigger for four of the events. After 24 h, ASAS-SN observed >60 per cent of total probability for three events and >40 per cent for all but one of the events. This is the largest area coverage to a depth of g = 18.5 mag from any survey with published coverage statistics for seven of the nine events. With its observing strategy, five sites around the world, and a large field of view, ASAS-SN will be one of the leading surveys to optically search for nearby neutron star mergers during LVC fourth observation run (O4).
    Free, publicly-accessible full text available November 27, 2022
  2. Free, publicly-accessible full text available April 1, 2023
  3. null (Ed.)
    Abstract The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the $$\nu _e$$ ν e spectral parameters of the neutrino burst will be considered.
  4. Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.