skip to main content


Search for: All records

Creators/Authors contains: "Beagan, Daniel M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The reduction of nitrogen oxyanions is critical for the remediation of eutrophication caused by anthropogenic perturbations to the natural nitrogen cycle. There are many approaches to nitrogen oxyanion reduction, and here we report our advances in reductive deoxygenation using pre-reduced N-heterocycles. We show examples of nitrogen oxyanion reduction using Cr, Fe, Co, Ni, and Zn, and we evaluate the role of metal choice, number of coordinated oxyanions, and ancillary ligands on the reductive transformations. We report the experimental challenges faced and provide an outlook on new directions to repurpose nitrogen oxyanions into value-added products. 
    more » « less
  2. The syntheses of (DIM)Ni(NO 3 ) 2 and (DIM)Ni(NO 2 ) 2 , where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin) 2 . Single deoxygenation of (DIM)Ni(NO 2 ) 2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ 1 -ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)] 2 , where the dimer is linked through a Ni–Ni bond. The lost reduced nitrogen byproduct is shown to be N 2 O, indicating N–N bond formation in the course of the reaction. Isotopic labelling studies establish that the N–N bond of N 2 O is formed in a bimetallic Ni 2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N–N bond formation. The [(DIM)Ni(NO)] 2 dimer is susceptible to oxidation by AgX (X = NO 3 − , NO 2 − , and OTf − ) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N 2 O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N 2 O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO − bridging ligand. 
    more » « less
  3. null (Ed.)
  4. Abstract

    We present a ligand platform featuring appended ditopic Lewis acids to facilitate capture/activation of diatomic substrates. We show that incorporation of two 9‐borabicyclo[3.3.1]nonane (9‐BBN) units on a single carbon tethered to a pyridine pyrazole scaffold maintains a set of unquenched nitrogen donors available to coordinate FeII, ZnII, and NiII. Using hydride ion affinity and competition experiments, we establish an additive effect for ditopic secondary sphere boranes, compared to the monotopic analogue. These effects are exploited to achieve high selectivity for binding NO2in the presence of competitive anions such as Fand NO3. Finally, we demonstrate hydrazine capture within the second‐sphere of metal complexes, followed by unique activation pathways to generate hydrazido and diazene ligands on Zn and Fe, respectively.

     
    more » « less
  5. Abstract

    We present a ligand platform featuring appended ditopic Lewis acids to facilitate capture/activation of diatomic substrates. We show that incorporation of two 9‐borabicyclo[3.3.1]nonane (9‐BBN) units on a single carbon tethered to a pyridine pyrazole scaffold maintains a set of unquenched nitrogen donors available to coordinate FeII, ZnII, and NiII. Using hydride ion affinity and competition experiments, we establish an additive effect for ditopic secondary sphere boranes, compared to the monotopic analogue. These effects are exploited to achieve high selectivity for binding NO2in the presence of competitive anions such as Fand NO3. Finally, we demonstrate hydrazine capture within the second‐sphere of metal complexes, followed by unique activation pathways to generate hydrazido and diazene ligands on Zn and Fe, respectively.

     
    more » « less
  6. null (Ed.)
    A density functional theory exploration studies a range of ancillary coordinated ligands accompanying nitrogen oxyanions with the goal of promoting back donation towards varied nitrogen oxidation states. Evaluation of a suite of Ru and Rh metal complexes reveals minimum back donation to the κ 1 -nitrogen oxyanion ligand, even upon one-electron reduction. This reveals some surprising consequences of reduction, including redox activity at pyridine and nitrogen oxyanion dissociation. Bidentate nitrate was therefore considered, where ancillary ligands enforce geometries that maximize M–NO x orbital overlap. This strategy is successful and leads to full electron transfer in several cases to form a pyramidal radical NO 3 2− ligand. The impact of ancillary ligand on degree of nitrate reduction is probed by comparing the powerful o-donor tris-carbene borate (TCB) to a milder donor, tris-pyrazolyl borate (Tp). This reveals that with the milder Tp donor, nitrate reduction is only seen upon addition of a Lewis base. Protonation of neutral and anionic (TCB)Ru(κ 2 -NO 3 ) at both terminal and internal oxygens reveals exergonic N–O bond cleavage for the reduced species, with one electron coming from Ru, yielding a Ru III hydroxide product. Comparison of H + to Na + electrophile shows weaker progress towards N–O bond scission. Finally, calculations on (TCB)Fe(κ 2 -NO 3 ) and [(TCB)Fe(κ 2 -NO 3 )] – show that electron transfer to nitrate is possible even with an earth abundant 3d metal. 
    more » « less
  7. null (Ed.)
  8. Abstract

    The reaction chemistry of the bis‐tetrazinyl pyridine ligand (btzp) towards nitrogen oxyanions coordinated to zinc is studied in order to explore the reduction of the NOxsubstrates with a redox‐active ligand in the absence of redox activity at the metal. Following syntheses and characterization of (btzp)ZnX2for X=Cl, NO3and NO2, featuring O−Zn linkage of both nitrogen oxyanions, it is shown that a silylating agent selectively delivers silyl substituents to tetrazine nitrogens, without reductive deoxygenation of NOx−1. A new synthesis of the highly hydrogenated H4btzp, containing two dihydrotetrazine reductants is described as is the synthesis and characterization of (H4btzp)ZnX2for X=Cl and NO3, both of which show considerable hydrogen bonding potential of the dihydrotetrazine ring NH groups. The (H4btzp)ZnCl2complex does not bind zinc in the pincer pocket, but instead H4btzp becomes a bridge between neighboring atoms through tetrazine nitrogen atoms, forming a polymeric chain. The reaction of AgNO2with (H4btzp)ZnCl2is shown to proceed with fast nitrite deoxygenation, yielding water and free NO. Half of the H4btzp reducing equivalents form Ag0and thus the chloride ligand remains coordinated to the zinc metal center to yield (btzp)ZnCl2. To compare with AgNO2, experiments of (H4btzp)ZnCl2with NaNO2result in salt metathesis between chloride and nitrite, highlighting the importance of a redox‐active cation in the reduction of nitrite to NO.

     
    more » « less