skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bean, Caleb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we explore the prospect of accelerating tree-based genetic programming (TGP) by way of modern field-programmable gate array (FPGA) devices, which is motivated by the fact that FPGAs can sometimes leverage larger amounts of data/function parallelism, as well as better energy efficiency, when compared to general-purpose CPU/GPU systems. In our preliminary study, we introduce a fixed-depth, tree-based architecture capable of evaluating type-consistent primitives that can be fully unrolled and pipelined. The current primitive constraints preclude arbitrary control structures, but they allow for entire programs to be evaluated every clock cycle. Using a variety of floating-point primitives and random programs, we compare to the recent TensorGP tool executing on a modern 8 nm GPU, and we show that our accelerator implemented on a 14 nm FPGA achieves an average speedup of 43×. When compared to the popular baseline tool DEAP executing across all cores of a 2-socket, 28-core (56-thread), 14 nm CPU server, our accelerator achieves an average speedup of 4,902×. Finally, when compared to the recent state-of-the-art tool Operon executing on the same 2-processor CPU system, our accelerator executes about 2.4× slower on average. Despite not achieving an average speedup over every tool tested, our single-FPGA accelerator is the fastest in several instances, and we describe five future extensions that could allow for a 32–144× speedup over our current design as well as allow for larger program depths/sizes. Overall, we estimate that a future version of our accelerator will constitute a state-of-the-art GP system for many applications. 
    more » « less