- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bean, Caleb (1)
-
Crary, Christopher (1)
-
Hicks, Benjamin (1)
-
Piard, Welsey (1)
-
Stitt, Greg (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we explore the prospect of accelerating tree-based genetic programming (TGP) by way of modern field-programmable gate array (FPGA) devices, which is motivated by the fact that FPGAs can sometimes leverage larger amounts of data/function parallelism, as well as better energy efficiency, when compared to general-purpose CPU/GPU systems. In our preliminary study, we introduce a fixed-depth, tree-based architecture capable of evaluating type-consistent primitives that can be fully unrolled and pipelined. The current primitive constraints preclude arbitrary control structures, but they allow for entire programs to be evaluated every clock cycle. Using a variety of floating-point primitives and random programs, we compare to the recent TensorGP tool executing on a modern 8 nm GPU, and we show that our accelerator implemented on a 14 nm FPGA achieves an average speedup of 43×. When compared to the popular baseline tool DEAP executing across all cores of a 2-socket, 28-core (56-thread), 14 nm CPU server, our accelerator achieves an average speedup of 4,902×. Finally, when compared to the recent state-of-the-art tool Operon executing on the same 2-processor CPU system, our accelerator executes about 2.4× slower on average. Despite not achieving an average speedup over every tool tested, our single-FPGA accelerator is the fastest in several instances, and we describe five future extensions that could allow for a 32–144× speedup over our current design as well as allow for larger program depths/sizes. Overall, we estimate that a future version of our accelerator will constitute a state-of-the-art GP system for many applications.more » « less