skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beardsley, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Microbial communities are complex ecological systems of organisms that evolve in time, with new variants created, while others disappear. Understanding how species interact within communities can help us shed light into the mechanisms that drive ecosystem processes. We studied systems with serial propagation, where the community is kept alive by taking a subsample at regular intervals and replating it in fresh medium. The data that are usually collected consist of the % of the population for each of the species, at several time points. In order to utilize this type of data, we formulated a system of equations (based on the generalized Lotka–Volterra model) and derived conditions of species noninteraction. This was possible to achieve by reformulating the problem as a problem of finding feasibility domains, which can be solved by a number of efficient algorithms. This methodology provides a cost‐effective way to investigate interactions in microbial communities. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026