skip to main content

Search for: All records

Creators/Authors contains: "Beck, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The differential cross section for the quasi-free photoproduction reaction$$\gamma n\rightarrow K^0\Sigma ^0$$γnK0Σ0was measured at BGOOD at ELSA from threshold to a centre-of-mass energy of$$2400\,\hbox {MeV}$$2400MeV. Close to threshold the results are consistent with existing data and are in agreement with partial wave analysis solutions over the full measured energy range, with a large coupling to the$$\Delta (1900)1/2^-$$Δ(1900)1/2-evident. This is the first dataset covering the$$K^*$$Kthreshold region, where there are model predictions of dynamically generated vector meson-baryon resonance contributions.

    more » « less

    The late-time integrated Sachs-Wolfe (ISW) imprint of $R\gtrsim 100~h^{-1}\, \mathrm{Mpc}$ superstructures is sourced by evolving large-scale potentials due to a dominant dark energy component in the ΛCDM model. The aspect that makes the ISW effect distinctly interesting is the repeated observation of stronger-than-expected imprints from supervoids at z ≲ 0.9. Here we analyse the un-probed key redshift range 0.8 < z < 2.2 where the ISW signal is expected to fade in ΛCDM, due to a weakening dark energy component, and eventually become consistent with zero in the matter dominated epoch. On the contrary, alternative cosmological models, proposed to explain the excess low-z ISW signals, predicted a sign-change in the ISW effect at z ≈ 1.5 due to the possible growth of large-scale potentials that is absent in the standard model. To discriminate, we estimated the high-z ΛCDM ISW signal using the Millennium XXL mock catalogue, and compared it to our measurements from about 800 supervoids identified in the eBOSS DR16 quasar catalogue. At 0.8 < z < 1.2, we found an excess ISW signal with AISW ≈ 3.6 ± 2.1 amplitude. The signal is then consistent with the ΛCDM expectation (AISW = 1) at 1.2 < z < 1.5 where the standard and alternative models predict similar amplitudes. Most interestingly, we also observed an opposite-sign ISW signal at 1.5 < z < 2.2 that is in 2.7σ tension with the ΛCDM prediction. Taken at face value, these recurring hints for ISW anomalies suggest an alternative growth rate of structure in low-density environments at $\sim 100~h^{-1}\, \mathrm{Mpc}$ scales.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. The development of color centers in diamond as the basis for emerging quantum technologies has been limited by the need for ion implantation to create the appropriate defects. We present a versatile method to dope diamond without ion implantation by synthesis of a doped amorphous carbon precursor and transformation at high temperatures and high pressures. To explore this bottom-up method for color center generation, we rationally create silicon vacancy defects in nanodiamond and investigate them for optical pressure metrology. In addition, we show that this process can generate noble gas defects within diamond from the typically inactive argon pressure medium, which may explain the hysteresis effects observed in other high-pressure experiments and the presence of noble gases in some meteoritic nanodiamonds. Our results illustrate a general method to produce color centers in diamond and may enable the controlled generation of designer defects. 
    more » « less
  6. Free, publicly-accessible full text available March 1, 2024
  7. null (Ed.)
    Abstract $$\gamma p \rightarrow K^{+} \Lambda $$ γ p → K + Λ differential cross sections and recoil polarisation data from threshold for extremely forward angles are presented. The measurements were performed at the BGOOD experiment at ELSA, utilising the high angular and momentum resolution forward spectrometer for charged particle identification. The high statistics and forward angle acceptance enables the extraction of the cross section as the minimum momentum transfer to the recoiling hyperon is approached. 
    more » « less