skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Becker, CC"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A ciliate belonging to theDiadema antillarumscuticociliatosis (DaSc)-associatedPhilasterclade (DaScPc) caused catastrophic long-spined urchin mass mortality in spring and summer of 2022. The ciliate can be grown in culture in both the presence and absence ofD. antillarumtissues, suggesting that it may persist outside its host by consuming microorganisms or dissolved organic nutrients. We hypothesized that DaScPc was present outside its host during and after mass mortality and absent prior to 2022. We examined DaScPc in DNA extracted from 500 swabs of sympatric metazoa and abiotic surfaces, and plankton samples, collected at 35 sites in the Caribbean in 2022 and 2023. DaScPc was detected on corals, turf algae, and a sponge, predominantly at sites with active or prior DaSc. We examined whether it was present prior to 2022 by surveying extracted DNA from Caribbean corals and water collected near corals by PCR and by mining publicly available transcriptomes and metagenomes for DaScPc rRNAs. These efforts yielded no DaScPc genes. We further hypothesized that DaScPc may recruit to the specific corals detected in field surveys, and that these may then infect naïve hosts. A mesocosm experiment to test DaScPc recruitment suggested that, while it recruited to corals, it did so inconsistently between coral species. Incubation of corals that recruited DaScPc with naïve urchins yielded inconclusive results since urchins died without characteristic DaSc signs. Overall, our results suggest that DaScPc may occur outside its urchin host, and that it may have been absent in the region prior to 2022. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  2. In coral reefs and adjacent seagrass meadow and mangrove environments, short temporal scales (i.e. tidal, diurnal) may have important influences on ecosystem processes and community structure, but these scales are rarely investigated. This study examines how tidal and diurnal forcings influence pelagic microorganisms and nutrient dynamics in 3 important and adjacent coastal biomes: mangroves, coral reefs, and seagrass meadows. We sampled for microbial ( Bacteria and Archaea ) community composition, cell abundances and environmental parameters at 9 coastal sites on St. John, US Virgin Islands that spanned 4 km in distance (4 coral reefs, 2 seagrass meadows and 3 mangrove locations within 2 larger bays). Eight samplings occurred over a 48 h period, capturing day and night microbial dynamics over 2 tidal cycles. The seagrass and reef biomes exhibited relatively consistent environmental conditions and microbial community structure but were dominated by shifts in picocyanobacterial abundances that were most likely attributed to diel dynamics. In contrast, mangrove ecosystems exhibited substantial daily shifts in environmental parameters, heterotrophic cell abundances and microbial community structure that were consistent with the tidal cycle. Differential abundance analysis of mangrove-associated microorganisms revealed enrichment of pelagic oligotrophic taxa during high tide and enrichment of putative sediment-associated microbes during low tide. Our study underpins the importance of tidal and diurnal time scales in structuring coastal microbial and nutrient dynamics, with diel and tidal cycles contributing to a highly dynamic microbial environment in mangroves, and time of day likely contributing to microbial dynamics in seagrass and reef biomes. 
    more » « less