- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Becker, Florent (1)
-
Hader, Daniel (1)
-
Patitz, Matthew J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper answers a long-standing open question in tile-assembly theory, namely that it is possible to strictly assemble discrete self-similar fractals (DSSFs) in the abstract Tile-Assembly Model (aTAM). We prove this in 2 separate ways, each taking advantage of a novel set of tools. One of our constructions shows that specializing the notion of a quine, a program which prints its own output, to the language of tile-assembly naturally induces a fractal structure. The other construction introduces self-describing circuits as a means to abstractly represent the information flow through a tile-assembly construction and shows that such circuits may be constructed for a relative of the Sierpinski carpet, and indeed many other DSSFs, through a process of fixed-point iteration. This later result, or more specifically the machinery used in its construction, further enable us to provide a polynomial time procedure for deciding whether any given subset of ℤ2 will generate an aTAM producible DSSF. To this end, we also introduce the Tree Pump Theorem, a result analogous to the important Window Movie Lemma, but with requirements on the set of productions rather than on the self-assembling system itself.more » « less
An official website of the United States government

Full Text Available