skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Becker, Kevin W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mesoscale eddies cause deviations from the background physical and biogeochemical states of the oligotrophic oceans, but how these perturbations manifest in microbial ecosystem functioning, such as community macromolecular composition or carbon export, remains poorly characterized. We present comparative lipidomes from communities entrained in two eddies of opposite polarities (cyclone–anticyclone) in the North Pacific Subtropical Gyre (NPSG). A previous work on this two-eddy system has shown differences in particulate inorganic carbon (PIC) and biogenic silica sinking fluxes between the two eddies despite comparable total organic carbon fluxes. We measured the striking differences between the lipidomes of suspended and sinking particles that indicate taxon-specific responses to mesoscale perturbations. Specifically, cyanobacteria did not appear to respond to increased concentrations of phosphorus in the subsurface of the cyclonic eddy, while eukaryotic microbes exhibit P-stress relief as reflected in their lipid signatures. Furthermore, we found that two classes of lipids drive differences between suspended and sinking material: sinking particles are comparatively enriched in phosphatidylcholine (PC, a membrane-associated lipid) and triacylglycerol (TAG, an energy storage lipid). We observed significantly greater export of TAGs from the cyclonic eddy as compared to the anticyclone and found that this flux is strongly correlated with the concentration of ballast minerals (PIC and biogenic silica). This increased export of TAGs from the cyclone, but not the anticyclone, suggests that cyclonic eddy perturbations may be a mechanism for the delivery of energy-rich organic material below the euphotic zone. 
    more » « less
    Free, publicly-accessible full text available September 13, 2025
  2. Climate-change-related declines in the availability of some essential fatty acids to marine food webs may affect future fisheries. 
    more » « less
  3. null (Ed.)