- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Acharya, Anushka (1)
-
An, Xiaoqiu (1)
-
Bederman, Maxwell (1)
-
Boyarov, Artyom (1)
-
Chen, Mingze (1)
-
Ki, Seung Jun (1)
-
Liang, Xiaogan (1)
-
Liu, Xirong (1)
-
Sekhon, Nihal (1)
-
Tawil, Justin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Traditional robotic vehicle control algorithms, implemented on digital devices with firmware, result in high power consumption and system complexity. Advanced control systems based on different device physics are essential for the advancement of sophisticated robotic vehicles and miniature mobile robots. Here, we present a nanoelectronics-enabled analog control system mimicking conventional controllers’ dynamic responses for real-time robotic controls, substantially reducing training cost, power consumption, and footprint. This system uses a reservoir computing network with interconnected memristive channels made from layered semiconductors. The network’s nonlinear switching and short-term memory characteristics effectively map input sensory signals to high-dimensional data spaces, enabling the generation of motor control signals with a simply trained readout layer. This approach minimizes software and analog-to-digital conversions, enhancing energy and resource efficiency. We demonstrate this system with two control tasks: rover target tracking and drone lever balancing, achieving similar performance to traditional controllers with ~10-microwatt power consumption. This work paves the way for ultralow-power edge computing in miniature robotic systems.more » « lessFree, publicly-accessible full text available March 28, 2026
An official website of the United States government
