Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Network polymers of sulfur and poly(4-allyloxystyrene), PAOSx ( x = percent by mass sulfur, where x is varied from 10–99), were prepared by reaction between poly(4-allyloxystyrene) with thermal homolytic ring-opened S 8 in a thiol-ene-type reaction. The extent to which sulfur content and crosslinking influence thermal/mechanical properties was assessed. Network materials having sulfur content below 50% were found to be thermosets, whereas those having >90% sulfur content are thermally healable and remeltable. DSC analysis revealed that low sulfur-content materials exhibited neither a T g nor a T m from −50 to 140 °C, whereas higher sulfur content materials featured T g or T m values that scale with the amount of sulfur. DSC data also revealed that sulfur-rich domains of PAOS90 are comprised of sulfur-crosslinked organic polymers and amorphous sulfur, whereas, sulfur-rich domains in PAOS99 are comprised largely of α-sulfur (orthorhombic sulfur). These conclusions are further corroborated by CS 2 -extraction and analysis of extractable/non-extractable fractions. Calculations based on TGA, FT-IR, H 2 S trapping experiments, CS 2 -extractable mass, and elemental combustion microanalysis data were used to assess the relative percentages of free and crosslinked sulfur and average number of S atoms per crosslink. Dynamic mechanical analyses indicate high storage moduli for PAOS90 and PAOS99 (on the order of 3 and 6 GPa at −37 °C, respectively), with a mechanical T g between −17 °C and 5 °C. A PAOS99 sample retains its full initial mechanical strength after at least 12 pulverization-thermal healing cycles, making it a candidate for facile repair and recyclability.more » « less
-
ABSTRACT Two tetraarylphosphonium polyelectrolytes having perfluorocyclobutyl units in their backbones have been prepared in which the counteranion is either bromide (
PFP· Br) or bis(trifluoromethyl)sulfonimide (PFP· NTf2). These polymers exhibit high thermal stability as assessed by thermogravimetric analysis, with a decomposition temperature of 460 °C forPFP· NTf2. Even after heating at 300 °C for 72 h,PFP· NTf2shows no signs of degradation detectable by nuclear magnetic resonance spectrometry. As is typical for many tetraarylphosphonium species, films of these polymers can be quite resistant to degradation by alkaline solution. Upon alkaline challenge by exposure to 6M NaOH at 65 °C for 24 h, for example, only 16% of the phosphonium centers inPFP ·NTf2are degraded, makingPFP ·NTf2one of the most alkaline‐stable phosphonium polymers to date. Despite having ionic backbones,PFP· Br andPFP· NTf2exhibit very low critical surface energies of 26.1 and 22.9 mJ m−1, respectively. These values are on par with the values for poly(vinylene fluoride) and dimethylsiloxane. Such low surface energy polycations capable of high alkaline stability may find application as components of alkaline fuel cell membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019 , 57, 2267–2272 -
ABSTRACT A series of 10 polythiophene derivatives is reported, in which each polymer has a different percentage of carboxylic acid‐bearing repeat units. The properties of these polymers are explored under acidic conditions, where the carboxylic acid moieties remain neutral, and under basic conditions, where the carboxylic acid units become anionic carboxylates. The properties that are examined for both solutions and films include UV–vis absorption spectroscopy, photoluminescence spectroscopy, and red‐edge optical band gaps. All the properties studied are strongly dependent both on protonation state and percentage of carboxylic acid/carboxylate side chains along the polymer backbone. The anionic form of each polythiophene derivative was also used in layer‐by‐layer film deposition with a cationic phosphonium polyelectrolyte. The film growth process was studied by spectroscopic techniques to assess the influence of side‐chain composition on the film growth and optical properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.
2019 -
ABSTRACT The properties of phosphonium polyelectrolytes (PELs) were evaluated in an effort to assess the influence of both side chain and main chain composition. The influence of side chain was examined by comparing properties of a series of PELs having hydrophobic octyloxy side chains to those of structural analogues lacking the side chains. The influence exerted by backbone flexibility/length of spacer between charges was revealed by comparing properties of two series of polymers with a variable number of methylene units between phosphonium charge‐bearing sites. Side chain composition and spacing between phosphonium units lead to noteworthy influence on thermal stability, glass transition, and crystallinity. The molecular structure of PELs also correlates with trends in film morphology and critical surface energy of PEL dip‐cast films. Sensitivity of morphology to humidity or water in the casting solvent was observed. Supramolecular assembly of films via layer‐by‐layer deposition of PELs alternating with anionic polythiophene derivative layers was also undertaken. The linearity of film growth, amount of material deposited in each bilayer, polycation:polyanion ratio, and film roughness all show noteworthy trends that depend on both the presence/absence of side chains and on spacing between ionic centers. The relationship between side chain and spacer on bactericidal activity against
Staphylococcus aureus andEscherichia coli was assessed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019 , 57, 24–34