skip to main content

Search for: All records

Creators/Authors contains: "Beehner, Jacinta C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2023
  2. Hopkins, Jack (Ed.)
    Abstract As fecal steroid methods increasingly are used by researchers to monitor the physiology of captive and wild populations, we need to expand our validation protocols to test the effects of procedural variation and to identify contamination by exogenous sources of steroid hormones. Mammalian carnivore feces often contain large amounts of hair from the prey they consume, which itself may contain high concentrations of hormones. In this study, we report first a validation of two steroid hormone antibodies, corticosterone and progesterone, to determine fecal concentrations of these hormones in wild spotted hyenas (Crocuta crocuta). Next, we expand on these standard validation protocols to test two additional metrics: (i) whether hair from consumed prey or (ii) the specific drying method (oven incubation vs. lyophilization) affect steroid hormone concentrations in feces. In the first biological validation for the progesterone antibody in this species, progesterone concentrations met our expectations: (i) concentrations of plasma and fecal progesterone were lowest in immature females, higher in lactating females, and highest in pregnant females; (ii) across pregnant females, fecal progesterone concentrations were highest during late pregnancy; and (iii) among lactating females, fecal progesterone concentrations were highest after parturition. Our additional validation experiments indicated that contamination with preymore »hair and drying method are hormone-specific. Although prey hair did not release hormones into samples during storage or extraction for either hormone, its presence appeared to “dilute” progesterone (but not corticosterone) measures indirectly by increasing the dry weight of samples. In addition, fecal progesterone, but not corticosterone, values were lower for lyophilized than for incubated samples. Therefore, in addition to the standard analytical and biological validation steps, additional methodological variables need to be tested whenever we measure fecal hormone concentrations, particularly from predatory mammals.« less
    Free, publicly-accessible full text available January 27, 2023
  3. Free, publicly-accessible full text available February 22, 2023
  4. Abstract Background Adaptive shifts in gut microbiome composition are one route by which animals adapt to seasonal changes in food availability and diet. However, outside of dietary shifts, other potential environmental drivers of gut microbial composition have rarely been investigated, particularly in organisms living in their natural environments. Results Here, we generated the largest wild nonhuman primate gut microbiome dataset to date to identify the environmental drivers of gut microbial diversity and function in 758 samples collected from wild Ethiopian geladas ( Theropithecus gelada ). Because geladas live in a cold, high-altitude environment and have a low-quality grass-based diet, they face extreme thermoregulatory and energetic constraints. We tested how proxies of food availability (rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas. The gelada gut microbiome composition covaried with rainfall and temperature in a pattern that suggests distinct responses to dietary and thermoregulatory challenges. Microbial changes were driven by differences in the main components of the diet across seasons: in rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down starches found in underground plant parts. Temperature had a comparatively smaller,more »but detectable, effect on the gut microbiome. During cold and dry periods, bacterial genes involved in energy, amino acid, and lipid metabolism increased, suggesting a stimulation of fermentation activity in the gut when thermoregulatory and nutritional stress co-occurred, and potentially helping geladas to maintain energy balance during challenging periods. Conclusion Together, these results shed light on the extent to which gut microbiota plasticity provides dietary and metabolic flexibility to the host, and might be a key factor to thriving in changing environments. On a longer evolutionary timescale, such metabolic flexibility provided by the gut microbiome may have also allowed members of Theropithecus to adopt a specialized diet, and colonize new high-altitude grassland habitats in East Africa.« less
  5. Free, publicly-accessible full text available January 1, 2023
  6. The cost–benefit ratio of group living is thought to vary with group size: individuals in ‘optimally sized’ groups should have higher fitness than individuals in groups that are either too large or too small. However, the relationship between group size and individual fitness has been difficult to establish for long-lived species where the number of groups studied is typically quite low. Here, we present evidence for optimal group size that maximizes female fitness in a population of geladas ( Theropithecus gelada ). Drawing on 14 years of demographic data, we found that females in small groups experienced the highest death rates, while females in mid-sized groups exhibited the highest reproductive performance. This group size effect on female reproductive performance was largely explained by variation in infant mortality (and, in particular, by infanticide from immigrant males) but not by variation in reproductive rates. Taken together, females in mid-sized groups are projected to attain optimal fitness due to conspecific infanticide and, potentially, predation. Our findings provide insight into how and why group size shapes fitness in long-lived species.
  7. Free, publicly-accessible full text available May 1, 2023
  8. Barribeau, Seth (Ed.)