skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beers, T C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. We have previously studied several elements in 58 selected bulge spheroid stars, based on spectral lines in theHband. We now derive the abundances of the less studied elements phosphorus (P; Z=15), sulphur (S; Z=16), and potassium (K; Z=19). Aims. The abundances of P, S, and K in 58 bulge spheroid stars are compared both with the results of a previous analysis of the data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), and with a few available studies of these elements. Methods. We derived the individual abundances through spectral synthesis, using the stellar physical parameters available for our sample from the DR17 release of the APOGEE project. We provide recommendations for the best lines to be used for the studied elements among those in theH-band. We also compare the present results, together with literature data, with chemical-evolution models. Finally, the neutrino-process was taken into account for the suitable fit to the odd-Z elements P and K. Results. We confirm that theH-band has useful lines for the derivation of the elements P, S, and K in moderately metal-poor stars. The abundances, plotted together with literature results from high-resolution spectroscopy, indicate that moderately enhanced phosphorus stars are found, reminiscent of results obtained for thick disc and halo stars of metallicity [Fe/H]≈−1.0. Therefore, for the first time, we identify that this effect occurs in the old stars from the bulge spheroid. Sulphur is anα-element and behaves as such. Potassium and sulphur both exhibit some star-to-star scatter, but fit within the expectations of chemical evolution models. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Context.In recent years, theR-Process Alliance (RPA) has conducted a successful search for stars that are enhanced in elements produced by the rapid neutron-capture (r-)process. In particular, the RPA has uncovered a number of stars that are strongly enriched in lightr-process elements, such as Sr, Y, and Zr. These so-called limited-rstars were investigated to explore the astrophysical production site(s) of these elements. Aims.We investigate the possible formation sites for light neutron-capture elements by deriving detailed abundances for neutron-capture elements from high-resolution spectra with a high signal-to-noise ratio of three limited-rstars. Methods.We conducted a kinematic analysis and a 1D local thermodynamic equilibrium spectroscopic abundance analysis of three stars. Furthermore, we calculated the lanthanide mass fraction (XLa) of our stars and of limited-rstars from the literature. Results.We found that the abundance pattern of neutron-capture elements of limited-rstars behaves differently depending on their [Ba/Eu] ratios, and we suggest that this should be taken into account in future investigations of their abundances. Furthermore, we found that theXLaof limited-rstars is lower than that of the kilonova AT2017gfo. The latter seems to be in the transition zone between limited-rXLaand that ofr-I andr-II stars. Finally, we found that unliker-I andr-II stars, the current sample of limited-rstars is largely born in the Galaxy and is not accreted. 
    more » « less
  3. Aims. An analysis of the methylidyne (CH) radical in non-local thermodynamic equilibrium (NLTE) is performed for the physical conditions of cool stellar atmospheres typical of red giants (log ɡ = 2.0, T eff = 4500 K) and the Sun. The aim of the present work is to explore whether the G band of the CH molecule, which is commonly used in abundance diagnostics of carbon-enhanced metal-poor stars, is sensitive to NLTE effects. Methods. LTE and NLTE theoretical spectra were computed with the MULTI code. We used one-dimensional (1D) LTE hydrostatic MARCS model atmospheres with parameters representing eleven red giant stars with metallicities ranging from [Fe/H] = −4.0 to [Fe/H] = 0.0 and carbon-to-iron ratios of [C/Fe] = 0.0, +0.7, +1.5, and +3.0. The CH molecule model was represented by 1981 energy levels, 18 377 radiative bound-bound transitions, and 932 photo-dissociation reactions. The rates due to transitions caused by collisions with free electrons and hydrogen atoms were computed using classical recipes. Results. Our calculations suggest that NLTE effects in the statistical equilibrium of the CH molecule are significant and cannot be neglected for precision spectroscopic analysis of C abundances. The NLTE effects are mostly driven by radiative over-dissociation, owing to the very low dissociation threshold of the molecule and significant resonances in the photo-dissociation cross-sections. The NLTE effects in the G band increase with decreasing metallicity. When comparing the C abundances determined from the CH G band in LTE and in NLTE, we show that the C abundances are always under-estimated if LTE is assumed. The NLTE corrections to C abundance inferred from the CH feature range from +0.04 dex for the Sun to +0.21 dex for a red giant with metallicity [Fe/H] = −4.0. Conclusions. Departures from the LTE assumption in the CH molecule are non-negligible, and NLTE effects have to be taken into account in the diagnostic spectroscopy based on the CH lines. We show here that the NLTE effects in the optical CH lines are non-negligible for the Sun and red giant stars, but further calculations are warranted to investigate the effects in other regimes of stellar parameters. 
    more » « less
  4. Context.Stars presently identified in the bulge spheroid are probably very old, and their abundances can be interpreted as due to the fast chemical enrichment of the early Galactic bulge. The abundances of the iron-peak elements are important tracers of nucleosynthesis processes, in particular oxygen burning, silicon burning, the weaks-process, andα-rich freeze-out. Aims.The aim of this work is to derive the abundances of V, Cr, Mn, Co, Ni, and Cu in 58 bulge spheroid stars and to compare them with the results of a previous analysis of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Methods.We selected the best lines for V, Cr, Mn, Co, Ni, and Cu located within theH-band of the spectrum, identifying the most suitable ones for abundance determination, and discarding severe blends. Using the stellar physical parameters available for our sample from the DR17 release of the APOGEE project, we derived the individual abundances through spectrum synthesis. We then complemented these measurements with similar results from different bulge field and globular cluster stars, in order to define the trends of the individual elements and compare with the results of chemical-evolution models. Results.We verify that theH-band has useful lines for the derivation of the elements V, Cr, Mn, Co, Ni, and Cu in moderately metalpoor stars. The abundances, plotted together with others from high-resolution spectroscopy of bulge stars, indicate that: V, Cr, and Ni vary in lockstep with Fe; Co tends to vary in lockstep with Fe, but could be showing a slight decrease with decreasing metallicity; and Mn and Cu decrease with decreasing metallicity. These behaviours are well reproduced by chemical-evolution models that adopt literature yields, except for Cu, which appears to drop faster than the models predict for [Fe/H]<−0.8. Finally, abundance indicators combined with kinematical and dynamical criteria appear to show that our 58 sample stars are likely to have originated in situ. 
    more » « less
  5. Context. The Southern Photometric Local Universe Survey (S-PLUS) is a project to map ~9300 sq deg of the sky using twelve bands (seven narrow and five broadbands). Observations are performed with the T80-South telescope, a robotic telescope located at the Cerro Tololo Observatory in Chile. The survey footprint consists of several large contiguous areas, including fields at high and low galactic latitudes, and towards the Magellanic Clouds. S-PLUS uses fixed exposure times to reach point source depths of about 21 mag in the 𝑔riɀ and 20 mag in theuand the narrow filters. Aims. This paper describes the S-PLUS Data Release 4 (DR4), which includes calibrated images and derived catalogues for over 3000 sq deg, covering the aforementioned area. The catalogues provide multi-band photometry performed with the toolsDoPHOTandSExtractor– point spread function (PSF) and aperture photometry, respectively. In addition to the characterization, we also present the scientific potential of the data. Methods. We use statistical tools to present and compare the photometry obtained through different methods. Overall we find good agreement between the different methods, with a slight systematic offset of 0.05 mag between ourPSFand aperture photometry. We show that the astrometry accuracy is equivalent to that obtained in previous S-PLUS data releases, even in very crowded fields where photometric extraction is challenging. The depths of main survey (MS) photometry for a minimum signal-to-noise ratioS/N= 3 reach from ~19.5 for the bluer bands to ~21.5 mag on the red. The range of magnitudes over which accuratePSFphotometry is obtained is shallower, reaching ~19 to ~20.5 mag depending on the filter. Based on these photometric data, we provide star-galaxy-quasar classification and photometric redshift for millions of objects. Results. We demonstrate the versatility of the data by presenting the results of a project to identify members of four Abell galaxy clusters in the Local Universe. The S-PLUS DR4 data allow for a reliable assessment of cluster membership out to a large radius corresponding to 5 ×r200. The S-PLUS DR4 can be accessed through the survey data portal. All the software used to generate the catalogues for this release and the scientific investigation presented is available in the collaboration GitHub repository. Conclusions. The S-PLUS DR4 consists of a large, calibrated public dataset, providing powerful ways for studying Galactic and extra-galactic objects through an extensive set of (broad and narrow) filters. 
    more » « less
  6. Abstract Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities. 
    more » « less