Oceanic transform faults play an essential role in plate tectonics. Yet to date, there is no unifying explanation for the global trend in broad-scale transform fault topography, ranging from deep valleys to shallow topographic highs. Using three-dimensional numerical models, we find that spreading-rate dependent magmatism within the transform domain exerts a first-order control on the observed spectrum of transform fault depths. Low-rate magmatism results in deep transform valleys caused by transform-parallel tectonic stretching; intermediate-rate magmatism fully accommodates far-field stretching, but strike-slip motion induces across-transform tension, producing transform strength dependent shallow valleys; high-rate magmatism produces elevated transform zones due to local compression. Our models also address the observation that fracture zones are consistently shallower than their adjacent transform fault zones. These results suggest that plate motion change is not a necessary condition for reproducing oceanic transform topography and that oceanic transform faults are not simple conservative strike-slip plate boundaries.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available December 1, 2025 -
Abstract Mantle melt generation in response to glacial unloading has been linked to enhanced magmatic volatile release in Iceland and global eruptive records. It is unclear whether this process is important in systems lacking evidence of enhanced eruptions. The deglaciation of the Yellowstone ice cap did not observably enhance volcanism, yet Yellowstone emits large volumes of CO2due to melt crystallization at depth. Here we model mantle melting and CO2release during the deglaciation of Yellowstone (using Iceland as a benchmark). We find mantle melting is enhanced 19-fold during deglaciation, generating an additional 250–620 km3. These melts segregate an additional 18–79 Gt of CO2from the mantle, representing a ~3–15% increase in the global volcanic CO2flux (if degassed immediately). We suggest deglaciation-enhanced mantle melting is important in continental settings with partially molten mantle – including Greenland and West Antarctica – potentially implying positive feedbacks between deglaciation and climate warming.
-
Abstract Oceanic detachment faults represent an end-member form of seafloor creation, associated with relatively weak magmatism at slow-spreading mid-ocean ridges. We use 3-D numerical models to investigate the underlying mechanisms for why detachment faults predominantly form on the transform side (inside corner) of a ridge-transform intersection as opposed to the fracture zone side (outside corner). One hypothesis for this behavior is that the slipping, and hence weaker, transform fault allows for the detachment fault to form on the inside corner, and a stronger fracture zone prevents the detachment fault from forming on the outside corner. However, the results of our numerical models, which simulate different frictional strengths in the transform and fracture zone, do not support the first hypothesis. Instead, the model results, combined with evidence from rock physics experiments, suggest that shear-stress on transform fault generates excess lithospheric tension that promotes detachment faulting on the inside corner.more » « lessFree, publicly-accessible full text available December 1, 2024
-
Free, publicly-accessible full text available November 1, 2024
-
Hans Thybo (Ed.)The continental lithospheric mantle plays an essential role in stabilizing continents over long geological time scales. Quantifying spatial variations in thermal and compositional properties of the mantle lithosphere is crucial to understanding its formation and its impact on continental stability; however, our understanding of these variations remains limited. Here we apply the Whole-rock Interpretive Seismic Toolbox For Ultramafic Lithologies (WISTFUL) to estimate thermal, compositional, and density variations in the continental mantle beneath the contiguous United States from MITPS_20, a joint body and surface wave tomographic inversion for Vp and Vs with high resolution in the shallow mantle (60–100 km). Our analysis shows lateral variations in temperature beneath the continental United States of up to 800–900 °C at 60, 80, and 100 km depth. East of the Rocky Mountains, the mantle lithosphere is generally cold (350–850 °C at 60 km), with higher temperatures (up to 1000 °C at 60 km) along the Atlantic coastal margin. By contrast, the mantle lithosphere west of the Rocky Mountains is hot (typically >1000 °C at 60 km, >1200 °C at 80–100 km), with the highest temperatures beneath Holocene volcanoes. In agreement with previous work, we find that the chemical depletion predicted by WISTFUL does not fully offset the density difference due to temperature. Extending our results using Rayleigh-Taylor instability analysis, implies the lithosphere below the United States could be undergoing oscillatory convection, in which cooling, densification, and sinking of a chemically buoyant layer alternates with reheating and rising of that layer.more » « less
-
null (Ed.)Abstract Surface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of-magnitude increase in subglacial transmissivity (from 0.8 ± 0.3 $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 to 215 ± 90.2 $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 ) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input.more » « less
-
Abstract To quantitatively convert upper mantle seismic wave speeds measured into temperature, density, composition, and corresponding and uncertainty, we introduce the
W hole‐rockI nterpretativeS eismicT oolboxF orU ltramaficL ithologies (WISTFUL). WISTFUL is underpinned by a database of 4,485 ultramafic whole‐rock compositions, their calculated mineral modes, elastic moduli, and seismic wave speeds over a range of pressure (P ) and temperature (T ) (P = 0.5–6 GPa,T = 200–1,600°C) using the Gibbs free energy minimization routine Perple_X. These data are interpreted with a toolbox of MATLAB® functions, scripts, and three general user interfaces:WISTFUL_relations , which plots relationships between calculated parameters and/or composition;WISTFUL_geotherms , which calculates seismic wave speeds along geotherms; andWISTFUL_inversion , which inverts seismic wave speeds for best‐fit temperature, composition, and density. To evaluate our methodology and quantify the forward calculation error, we estimate two dominant sources of uncertainty: (a) the predicted mineral modes and compositions, and (b) the elastic properties and mixing equations. To constrain the first source of uncertainty, we compiled 122 well‐studied ultramafic xenoliths with known whole‐rock compositions, mineral modes, and estimatedP ‐T conditions. We compared the observed mineral modes with modes predicted using five different thermodynamic solid solution models. The Holland et al. (2018,https://doi.org/10.1093/petrology/egy048 ) solution models best reproduce phase assemblages (∼12 vol. % phase root‐mean‐square error [RMSE]) and estimated wave speeds. To assess the second source of uncertainty, we compared wave speed measurements of 40 ultramafic rocks with calculated wave speeds, finding excellent agreement (V pRMSE = 0.11 km/s). WISTFUL easily analyzes seismic datasets, integrates into modeling, and acts as an educational tool. -
Abstract. Viscous flow in ice is often described by the Glen flow law – anon-Newtonian, power-law relationship between stress and strain rate with astress exponent n ∼ 3. The Glen law is attributed tograin-size-insensitive dislocation creep; however, laboratory and fieldstudies demonstrate that deformation in ice can be strongly dependent ongrain size. This has led to the hypothesis that at sufficiently lowstresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studiesfind that neither dislocation creep (n ∼ 4) nor grain boundarysliding (n ∼ 1.8) have stress exponents that match the value ofn ∼ 3 in the Glen law. Thus, although the Glen law provides anapproximate description of ice flow in glaciers and ice sheets, itsfunctional form is not explained by a single deformation mechanism. Here weseek to understand the origin of the n ∼ 3 dependence of theGlen law by using the “wattmeter” to model grain size evolution in ice.The wattmeter posits that grain size is controlled by a balance between themechanical work required for grain growth and dynamic grain size reduction.Using the wattmeter, we calculate grain size evolution in two end-membercases: (1) a 1-D shear zone and (2) as a function of depth within anice sheet. Calculated grain sizes match both laboratory data and ice coreobservations for the interior of ice sheets. Finally, we show thatvariations in grain size with deformation conditions result in an effectivestress exponent intermediate between grain boundary sliding and dislocationcreep, which is consistent with a value of n = 3 ± 0.5 over the rangeof strain rates found in most natural systems.more » « less
-
Surface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of- magnitude increase in subglacial transmissivity (from 0.8 ± 0.3 mm3 to 215 ± 90.2 mm3) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input.more » « less
-
Abstract At subduction zones, significant volumes of sediments and other crustal material are carried on top of the downgoing plate past the trench and into the mantle. This represents the dominant process by which material from the Earth's surface is recycled to the interior. However, the fate of these recycled materials is uncertain. Subducted material may be carried with the slab into the deep mantle, or it may form diapirs that ascend into the hotter portions of the mantle wedge, where they can melt and/or be relaminated to the base of the arc crust. While this material can be a mixture (or “mélange”) of sediments, oceanic crust and mantle rocks, here we focus on the dynamics of the uppermost layer of sediments on the downgoing slab. We modified a thermodynamic model to accurately predict the equilibrium mineral assemblage, melting behavior, and density of a range of subducted sediment compositions at pressure and temperature conditions relevant to subduction zones. Using this thermodynamic model, we constructed a coupled dynamic model of sediment diapirs and identified the primary parameters that control diapir behavior: sediment thickness and composition, and the thermal state of the subduction zone. Relamination of ascending diapirs is favored by greater sediment thicknesses, more felsic compositions, and warmer thermal conditions. By contrast, diapirism is suppressed in colder arcs, or where subducted sediment layers are thin or more mafic. Applying this model to modern subduction zones suggests that multiple processes are active today, with relamination occurring in a significant subset of modern arcs.