skip to main content


Search for: All records

Creators/Authors contains: "Behnia, Farnaz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this paper, we propose Code-Bridged Classifier (CBC), a framework for making a Convolutional Neural Network (CNNs) robust against adversarial attacks without increasing or even by decreasing the overall models' computational complexity. More specifically, we propose a stacked encoder-convolutional model, in which the input image is first encoded by the encoder module of a denoising auto-encoder, and then the resulting latent representation (without being decoded) is fed to a reduced complexity CNN for image classification. We illustrate that this network not only is more robust to adversarial examples but also has a significantly lower computational complexity when compared to the prior art defenses. 
    more » « less
  2. One of the promising solutions for energy-efficient CNNs is to break them down into multiple stages that are executed sequentially (MS-CNN). In this paper, we illustrate that unlike deep CNNs, MS-CNNs develop a form of contextual awareness of input data in initial stages, which could be used to dynamically change the structure and connectivity of such networks to reduce their computational complexity, making them a better fit for low-power and real-time systems. We suggest three run-time optimization policies, which are capable of exploring such contextual knowledge, and illustrate how the proposed policies construct a dynamic architecture suitable for a wide range of applications with varied accuracy requirements, resources, and time-budget, without further need for network re-training. Moreover, we propose variable and dynamic bit-length fixed-point conversion to further reduce the memory footprint of the MS-CNNs. 
    more » « less
  3. With Convolutional Neural Networks (CNN) becoming more of a commodity in the computer vision field, many have attempted to improve CNN in a bid to achieve better accuracy to a point that CNN accuracies have surpassed that of human's capabilities. However, with deeper networks, the number of computations and consequently the power needed per classification has grown considerably. In this paper, we propose Iterative CNN (ICNN) by reformulating the CNN from a single feed-forward network to a series of sequentially executed smaller networks. Each smaller network processes a sub-sample of input image, and features extracted from previous network, and enhances the classification accuracy. Upon reaching an acceptable classification confidence, ICNN immediately terminates. The proposed network architecture allows the CNN function to be dynamically approximated by creating the possibility of early termination and performing the classification with far fewer operations compared to a conventional CNN. Our results show that this iterative approach competes with the original larger networks in terms of accuracy while incurring far less computational complexity by detecting many images in early iterations. 
    more » « less