skip to main content


Search for: All records

Creators/Authors contains: "Behrens, Kristen A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Sex determining loci have been described on at least 12 of 22 chromosomes in East African cichlid fishes, indicating a high rate of sex chromosome turnover. To better understand the rates and patterns of sex chromosome replacement, we used new methods to characterize the sex chromosomes of the cichlid tribe Cyprichromini from Lake Tanganyika. Our k-mer based methods successfully identified sex-linked polymorphisms without the need for a reference genome. We confirm the three previously reported sex chromosomes in this group. We determined the polarity of the sex chromosome turnover on LG05 in Cyprichromis as ZW to XY. We identified a new ZW locus on LG04 in Paracyprichromis brieni. The LG15 XY locus in Paracyprichromis nigripinnis was not found in other Paracyprichromis species, and the sample of Paracyprichromis sp. “tembwe ” is likely to be of hybrid origin. Although highly divergent sex chromosomes are thought to develop in a stepwise manner, we show two cases (LG05-ZW and LG05-XY) in which the region of differentiation encompasses most of the chromosome, but appears to have arisen in a single step. This study expands our understanding of sex chromosome evolution in the Cyprichromini, and indicates an even higher level of sex chromosome turnover than previously thought. 
    more » « less
  3. African cichlid fishes harbor an extraordinary diversity of sex-chromosome systems. Within just one lineage, the tribe Haplochromini, at least 6 unique sex-chromosome systems have been identified. Here we focus on characterizing sex chromosomes in cichlids from the Lake Victoria basin. In Haplochromis chilotes, we identified a new ZW system associated with the white blotch color pattern, which shows substantial sequence differentiation over most of LG16, and is likely to be present in related species. In Haplochromis sauvagei, we found a coding polymorphism in amh that may be responsible for an XY system on LG23. In Pundamilia nyererei, we identified a feminizing effect of B chromosomes together with XY- and ZW-patterned differentiation on LG23. In Haplochromis latifasciatus, we identified a duplication of amh that may be present in other species of the Lake Victoria superflock. We further characterized the LG5-14 XY system in Astatotilapia burtoni and identified the oldest stratum on LG14. This species also showed ZW differentiation on LG2. Finally, we characterized an XY system on LG7 in Astatoreochromis alluaudi. This report brings the number of distinct sex-chromosome systems in haplochromine cichlids to at least 13, and highlights the dynamic evolution of sex determination and sex chromosomes in this young lineage. 
    more » « less