skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Belashchenko, K. D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phonon-driven $s$-wave superconductivity is fundamentally antagonistic to uniform magnetism, and field-induced suppression of the critical temperature is one of its canonical signatures. Examples of the opposite are unique and require fortuitous cancellations and very fine parameter tuning. The recently discovered Ising superconductors violate this rule: an external magnetic field applied in a certain direction does not suppress superconductivity in an ideal, impurity-free material. We propose a simple and experimentally accessible system where the effects of spin-conserving and spin-flip scattering can be studied in a controlled way, namely NbSe$_2$ monolayers dosed with magnetic $3d$ atoms. We predict that the critical temperature is slightly increased by an in-plane magnetic field in NbSe$_2$ dosed with Cr. Due to the band spin splitting, magnetic spin-flip scattering requires a finite momentum transfer, while spin-conserving scattering does not. If the magnetic anisotropy is easy-axis, an in-plane field reorients the impurity spins and transforms spin-conserving scattering into spin-flip. The critical temperature is enhanced if the induced magnetization of NbSe$_2$ has a substantial long-range component, as is the case for Cr ions. 
    more » « less
    Free, publicly-accessible full text available May 3, 2025
  2. Crystallographic anisotropy of the spin-dependent conductivity tensor can be exploited to generate transverse spin-polarized current in a ferromagnetic film. This ferromagnetic spin Hall effect is analogous to the spin-splitting effect in altermagnets and does not require spin-orbit coupling. First-principles screening of 41 non-cubic ferromagnets revealed that many of them, when grown as a single crystal with tilted crystallographic axes, can exhibit large spin Hall angles comparable with the best available spin-orbit-driven spin Hall sources. Macroscopic spin Hall effect is possible for uniformly magnetized ferromagnetic films grown on some low-symmetry substrates with epitaxial relations that prevent cancellation of contributions from different orientation domains. Macroscopic response is also possible for any substrate if magnetocrystalline anisotropy is strong enough to lock the magnetization to the crystallographic axes in different orientation domains. 
    more » « less
    Free, publicly-accessible full text available February 8, 2025
  3. Spin-accumulation and spin-current profiles are calculated for a disordered Pt film subjected to an in-plane electric current within the nonequilibrium Green's function approach. In the bulklike region of the sample, this approach captures the intrinsic spin Hall effect found in other calculations. Near the surfaces, the results reveal qualitative differences with the results of the widely used spin-diffusion model, even when the boundary conditions are modified to try to account for them. One difference is that the effective spin-diffusion length for transverse spin transport is significantly different from its longitudinal counterpart and is instead similar to the mean-free path. This feature may be generic for spin currents generated via the intrinsic spin Hall mechanism because of the differences in transport mechanisms compared to longitudinal spin transport. Orbital accumulation in the Pt film is only significant in the immediate vicinity of the surfaces and has a small component penetrating into the bulk only in the presence of spin-orbit coupling, as a secondary effect induced by the spin accumulation. 
    more » « less
    Free, publicly-accessible full text available October 25, 2024
  4. null (Ed.)
  5. Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to the Fermi level. In the Co/Pt/Gr system the proximity-induced spin polarization in graphene and its gate control are strongly enhanced by the presence of a surface band near the Fermi level. Furthermore, the shift of the Dirac point could be eliminated entirely by selecting submonolayer coverage in the passivation layer. Our findings open a path towards experimental realization of an optimized two-dimensional system with gate-tunable spin-dependent properties. 
    more » « less
  6. null (Ed.)