skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Belfield, Kevin D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract Chemoresistance is one of the major challenges for cancer treatment, more recently ascribed to defective mitochondrial outer membrane permeabilization (MOMP), significantly diminishing chemotherapeutic agent‐induced apoptosis. A boron‐dipyrromethene (BODIPY) chromophore‐based triarylsulfonium photoacid generator (BD‐PAG) was used to target mitochondria with the aim to regulate mitochondrial pH and further depolarize the mitochondrial membrane. Cell viability assays demonstrated the relative biocompatibility of BD‐PAG in the dark while live cell imaging suggested high accumulation in mitochondria. Specific assays indicated that BD‐PAG is capable of regulating mitochondrial pH with significant effects on mitochondrial membrane depolarization. Therapeutic tests using chlorambucil in combination with BD‐PAG revealed a new strategy in chemoresistance suppression. 
    more » « less
  4. Abstract Acid‐sensing ion channels (ASICs), present in both central and peripheral neurons, respond to changes in extracellular protons. They play important roles in many symptoms and diseases, such as pain, ischemic stroke and neurodegenerative diseases. Herein, we report a novel approach to activate ASICs with the precision of light using organic photoacid generators (PAGs), which are molecules that release H+upon light illumination, and have been recently used in biomedical studies. The PAGs showed low toxicity in dark conditions. Under LED light illumination, ASICs activation and consequent calcium ion influx was monitored and analysed by fluorescence microscopy, and showed a strong light‐dependent response. This approach allows the activation of ASICs with the precision of light, and may be valuable to help better elucidate the molecular mechanism of ASICs and unveil their roles in physiology, pathophysiology, and behaviour. 
    more » « less