skip to main content


Search for: All records

Creators/Authors contains: "Bell, Terrence H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bark decomposition is an underexamined component of soil carbon cycling and soil community assembly. Numerous studies have shown faster decomposition of leaf litter in “home” environments (i.e. within soil adjacent to the plant that produced the leaves), suggesting potential legacy effects from previous deposition of similar litter. This is expected to occur through, in part, accumulation of microorganisms that metabolize substrates the litter provides. Whether a similar “home-field advantage” (HFA) exists for bark decomposition is unknown, but this dynamic may differ because annual bark deposits to soil are minimal relative to leaf deposits. We hypothesized that (1) as with leaf litter, bark will be better decomposed near to the tree from which it was collected, and (2) that decomposing bark can initiate change in soil microbial composition. To test these hypotheses, we used a full factorial design that included two bark types (collected from eastern hemlock, Tsuga canadensis , and white oak, Quercus alba ) and two soil types (‘home’ and ‘away’) within a temperate mixed hardwood forest at the Shale Hills Catchment in central Pennsylvania, USA. Bark was excised from 25 replicates of each tree type, buried in either home or away soil, and incubated belowground from July 2017 to June 2018. Decomposition was assessed through proportionate mass loss over time, while microbial composition in the bark and adjacent soil was assessed through high-throughput sequencing of 16S rRNA gene and fungal ITS fragments. Overall, bark degraded faster in white oak soils, and there was also an effect of bark type on decomposition. Although white oak bark decomposed more quickly in its home environment, this could be due to either soil conditioning or inherent differences in the soils in which each species grows. Soil microbial assemblages also sorted according to bark type rather than soil type, suggesting that bark strongly influences the composition of nearby microorganisms during decomposition. Our results suggest that both bark type and soil type are important factors during bark decomposition, but our findings suggest no clear evidence for HFA. 
    more » « less
  2. Summary

    Understanding the processes guiding microbial community assembly in soils is essential for predicting microbiome structure and function following soil disturbance events like agricultural soil fumigation. However, assembly outcomes are complex and variable, being affected by both selective abiotic forces and by the history of colonizing microorganisms. To untangle the interactions between these factors, we conducted a controlled microcosm study tracking bacterial assembly in cleared soils over 7 weeks. We used mesh bags to connect five unsterilized source soils, differing in land use history (forested, agricultural, or fallow), with four sterile recipient soil treatments, differing in abiotic conditions (no soil additives, salt addition, urea addition, or mixed salt/urea addition). We found that 59%–96% of bacterial colonizers after 1 week wereFirmicutes, but by 7 weeksActinobacteriaandBacteroideteswere also dominant. Salt and nitrogen additions reshaped bacterial assembly by constraining alpha diversity by up to half and biomass accumulation by up to an order of magnitude. Within‐treatment dispersion was significantly lower for salt and nutrient addition microcosms, suggesting deterministic selective pressures. In contrast, source soil origin had little impact on assembly trajectories. These results suggest that abiotic conditions can overshadow microbial source history in shaping community assembly outcomes.

     
    more » « less