We characterize the 3D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $\approx 7 \, \rm {Gyr}$ ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $\gtrsim 12 \, \rm {Gyr}$ ago. The strength of the present-day abundance gradient does not correlate with when the disc ‘settled’; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 deg scatter decreased over time, from $\lesssim 0.17 \, \rm {dex}$ at $t_{\rm lb} = 11.6 \, \rm {Gyr}$ to $\sim 0.04 \, \rm {dex}$ at present-day. Consequently, stars at $t_{\rm lb} \gtrsim 8 \, \rm {Gyr}$ formed in a disc with primarily azimuthal scatter in abundances. All stars formed in amore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT We use FIRE-2 simulations to examine 3D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 MW and M31-mass galaxies across their formation histories at z ≤ 1.5 ($t_{\rm lookback} \le 9.4 \, \rm {Gyr}$), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within $1 \, \rm {kpc}$ of the disc mid-plane is vertically homogeneous to $\lesssim 0.008 \, \rm {dex}$ at all z ≤ 1.5. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from $\approx \! -0.01 \, \rm {dex}\, \rm {kpc}^{-1}$ at z = 1 ($t_{\rm lookback} = 7.8 \, \rm {Gyr}$) to $\approx \! -0.03 \, \rm {dex}\, \rm {kpc}^{-1}$ at z = 0, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically $0.14 \, \rm {dex}$ at z = 1, reducing to $0.05 \, \rm {dex}$ at z = 0. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at z ≳ 0.8 ($t_{\rm lookback} \gtrsim 6.9 \, \rm {Gyr}$). Furthermore, elemental abundancesmore »
-
ABSTRACT We present the first measurement of the lifetimes of giant molecular clouds (GMCs) in cosmological simulations at z = 0, using the Latte suite of FIRE-2 simulations of Milky Way (MW) mass galaxies. We track GMCs with total gas mass ≳105 M⊙ at high spatial (∼1 pc), mass (7100 M⊙), and temporal (1 Myr) resolution. Our simulated GMCs are consistent with the distribution of masses for massive GMCs in the MW and nearby galaxies. We find GMC lifetimes of 5–7 Myr, or 1–2 freefall times, on average, with less than 2 per cent of clouds living longer than 20 Myr. We find decreasing GMC lifetimes with increasing virial parameter, and weakly increasing GMC lifetimes with galactocentric radius, implying that environment affects the evolutionary cycle of GMCs. However, our GMC lifetimes show no systematic dependence on GMC mass or amount of star formation. These results are broadly consistent with inferences from the literature and provide an initial investigation into ultimately understanding the physical processes that govern GMC lifetimes in a cosmological setting.