skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bello, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract This project developed small, portable sensor-based experiments as an alternative to those conducted in a traditional laboratory setting. Experiment-centric pedagogy was used in this study and hands-on laboratory experiments were developed using USB-based measurement devices (ADALM 1000) and ADALM2000). Three experiments were developed for Chemistry namely pH meter, thermochemistry, and spectrophotometry. During pH settlement, the voltage was recorded, and the calibration curve drawn using standard buffers 4, 7, and 10. Furthermore, thermochemistry results were performed and validated using a digital thermometer. R2 curves have been found to yield good results for both experiments. Department of Transportation worked on four experiments which include vehicle counter, accelerometer, decibel meter, and a soil moisture meter. Data was recorded from each setup. Since the sensors provided results as voltages, a transfer function equation was used to convert the reading to the required unit of expression to validate the results from the USB device. These experiments were developed by pairing a graduate student in electrical engineering with a student in another discipline during a 10-week summer workshop. Student trainees underwent different training sessions that comprise of developing and testing instruments for measurement, attending the ASEE virtual conference, and research workshops. Students also read and summarized articles on the use of experimental pedagogy to motivate students. This study is designed to improve outcomes for students in the chemistry and transportation departments using laboratory activities. Keyword: Chemistry, Transportation, Sensor, Active Learning, ADALM Board, and Experiment Centric Pedagogy 
    more » « less
  2. The COVID-19 pandemic forced many colleges and universities to remain on a completely online or remote educational learning for more than a year; however, due to distraction, lack of motivation or engagement, and other internal/external pandemic contributing factors, learners could not pay attention 100% to the learning process. Additionally, given that transportation classes are very hands-on, students could not do the experiment from home due to limited resources available, thereby hampering all three phases of learner interactions. The limitation of the implementation of physical, hands-on laboratory exercises during the pandemic further exacerbated students’ actualization of the critical Accreditation Board for Engineering and Technology (ABET) outcomes in transportation: An ability to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions. Subsequently, this paper highlights the development and implementation of experiment centric pedagogy (ECP) home-based active learning experiments in three transportation courses: Introduction to Transportation Systems, Traffic Engineering, and Highway Engineering during the pandemic. Quantitative and qualitative student success key constructs data was collected in conjunction with the execution of classroom observation protocols that measure active learning in these transportation courses. The results reveal a significant difference between the pre, and post- tests of key constructs associated with student success, such as motivation, critical thinking, curiosity, collaboration, and metacognition. The results of the Classroom Observation Protocol for Undergraduate STEM (COPUS) show more active student engagement when ECP is implemented. 
    more » « less