skip to main content

Search for: All records

Creators/Authors contains: "Ben, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Disease dynamics, human mobility, and public policies co-evolve during a pandemic such as COVID-19. Understanding dynamic human mobility changes and spatial interaction patterns are crucial for understanding and forecasting COVID- 19 dynamics. We introduce a novel graph-based neural network(GNN) to incorporate global aggregated mobility flows for a better understanding of the impact of human mobility on COVID-19 dynamics as well as better forecasting of disease dynamics. We propose a recurrent message passing graph neural network that embeds spatio-temporal disease dynamics and human mobility dynamics for daily state-level new confirmed cases forecasting. This work represents one of the early papers onmore »the use of GNNs to forecast COVID-19 incidence dynamics and our methods are competitive to existing methods. We show that the spatial and temporal dynamic mobility graph leveraged by the graph neural network enables better long-term forecasting performance compared to baselines.« less
  2. This work quanti es mobility changes observed during the di erent phases of the pandemic world-wide at multiple resolutions { county, state, country { using an anonymized aggregate mobility map that captures population ows between geographic cells of size 5 km2. As we overlay the global mobility map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell and has since then seen a slow but steady increase in ows. Further, in order to understand mixing within a region, we propose a new metric to quantify the e ect of social distancingmore »on the basis of mobility.Taking two very di erent countries sampled from the global spectrum, We analyze in detail the mobility patterns of the United States (US) and India. We then carry out a counterfactual analysis of delaying the lockdown and show that a one week delay would have doubled the reported number of cases in the US and India. Finally, we quantify the e ect of college students returning back to school for the fall semester on COVID-19 dynamics in the surrounding community. We employ the data from a recent university outbreak (reported on August 16, 2020) to infer possible Re values and mobility ows combined with daily prevalence data and census data to obtain an estimate of new cases that might arrive on a college campus. We nd that maintaining social distancing at existing levels would be e ective in mitigating the extra seeding of cases. However, potential behavioral change and increased social interaction amongst students (30% increase in Re ) along with extra seeding can increase the number of cases by 20% over a period of one month in the encompassing county. To our knowledge, this work is the rst to model in near real-time, the interplay of human mobility, epidemic dynamics and public policies across multiple spatial resolutions and at a global scale.« less