skip to main content


Search for: All records

Creators/Authors contains: "Ben-Zion, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Crustal seismic velocity models provide essential information for many applications including earthquake source properties, simulations of ground motion and related derivative products. We present a systematic workflow for assessing the accuracy of velocity models with full-waveform simulations. The framework is applied to four regional seismic velocity models for southern California: CVM-H15.11, CVM-S4.26, CVM-S4.26.M01 that includes a shallow geotechnical layer, and the model of Berg et al. For each model, we perform 3-D viscoelastic wave propagation simulations for 48 virtual seismic noise sources (down to 2 s) and 44 moderate-magnitude earthquakes (down to 2 s generally and 0.5 s for some cases) assuming a minimum shear wave velocity of 200 m s–1. The synthetic waveforms are compared with observations associated with both earthquake records and noise cross-correlation data sets. We measure, at multiple period bands for well-isolated seismic phases, traveltime delays and normalized zero-lag cross-correlation coefficients between the synthetic and observed data. The obtained measurements are summarized using the mean absolute derivation of time delay and the mean correlation coefficient. These two metrics provide reliable statistical representations of model quality with consistent results in all data sets. In addition to assessing the overall (average) performance of different models in the entire study area, we examine spatial variations of the models’ quality. All examined models show good phase and waveform agreements for surface waves at periods longer than 5 s, and discrepancies at shorter periods reflecting small-scale heterogeneities and near-surface structures. The model performing best overall is CVM-S4.26.M01. The largest misfits for both body and surface waves are in basin structures and around large fault zones. Inaccuracies generated in these areas may affect tomography and model simulation results at other regions. The seismic velocity models for southern California can be improved by adding better resolved structural representations of the shallow crust and volumes around the main faults.

     
    more » « less
  2. Abstract

    A self‐consistent regional‐scale seismic velocity model with resolution from seismogenic depth to the surface is crucial for seismic hazard assessment. Though Southern California is the most seismically imaged region in the world, techniques with high near‐surface sensitivity have been applied only in disparate local areas and have not been incorporated into a unified model with deeper resolution. In the present work, we obtain isotropic values for Rayleigh wave phase velocity and ellipticity in Southern California by cross‐correlating daily time series from the year 2015 across 315 regional stations in period ranges 6 to 18 s. Leveraging the complementary sensitivity of the two Rayleigh wave data sets, we combine H/V and phase velocity measurements to determine a new 3‐D shear velocity model in a Bayesian joint inversion framework. The new model has greatly improved shallow resolution compared to the Southern California Earthquake Center CVMS4.26 reference model. Well‐known large‐scale features common to previous studies are resolved, including velocity contrasts across the San Andreas, San Jacinto, Garlock, and Elsinore faults, midcrustal high‐velocity structure beneath the Mojave Desert, and shallow Moho beneath the Salton Trough. Other prominent features that have previously only been imaged in focused local studies include the correct sedimentary thickness of the southern Central Valley, fold structure of the Ventura and Oak Ridge Anticlines, and velocity contrast across the Newport‐Inglewood fault. The new shallow structure will greatly impact simulation‐based studies of seismic hazard, especially in the near‐surface low‐velocity zones beneath densely populated areas like the Los Angeles, San Bernardino, and Ventura Basins.

     
    more » « less