- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Benasco, Anthony R. (4)
-
Morgan, Sarah E. (3)
-
Azoulay, Jason D. (2)
-
Eedugurala, Naresh (2)
-
Abbaszadeh, Mahsa (1)
-
Blanton, Michael D. (1)
-
Chen, Yusheng (1)
-
Dai, Qilin (1)
-
Flood, Amar H. (1)
-
Gu, Xiaodan (1)
-
Kaphle, Vikash (1)
-
Kundu, Santanu (1)
-
Lakdusinghe, Madhubhashini (1)
-
Liu, Wei (1)
-
Mishra, Satish (1)
-
Moore, Levi M.J. (1)
-
Ng, Tse Nga (1)
-
Norman, Mark B. (1)
-
Qi, Yifang (1)
-
Richardson, Julian M. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Xiong, Jian ; Eedugurala, Naresh ; Qi, Yifang ; Liu, Wei ; Benasco, Anthony R. ; Zhang, Qiqi ; Morgan, Sarah E. ; Blanton, Michael D. ; Azoulay, Jason D. ; Dai, Qilin ( , Solar Energy Materials and Solar Cells)null (Ed.)
-
Moore, Levi M.J. ; Norman, Mark B. ; Benasco, Anthony R. ; Richardson, Julian M. ; Morgan, Sarah E. ( , Synthetic Metals)
-
Benasco, Anthony R. ; Tropp, Joshua ; Kaphle, Vikash ; Chen, Yusheng ; Zhao, Wei ; Eedugurala, Naresh ; Ng, Tse Nga ; Flood, Amar H. ; Azoulay, Jason D. ( , Advanced Electronic Materials)
Abstract Phosphate oxyanions play central roles in biological, agricultural, industrial, and ecological processes. Their high hydration energies and dynamic properties present a number of critical challenges limiting the development of sensing technologies that are cost‐effective, selective, sensitive, field‐deployable, and which operate in real‐time within complex aqueous environments. Here, a strategy that enables the fabrication of an electrolyte‐gated organic field‐effect transistor (EGOFET) is demonstrated, which overcomes these challenges and enables sensitive phosphate quantification in challenging aqueous environments such as seawater. The device channel comprises a composite layer incorporating a diketopyrrolopyrrole‐based semiconducting polymer and a π‐conjugated penta‐
t ‐butylpentacyanopentabenzo[25]annulene “cyanostar” receptor capable of oxyanion recognition and embodies a new concept, where the receptor synergistically enhances the stability and transport characteristics via doping. Upon exposure of the device to phosphate, a current reduction is observed, consistent with dedoping upon analyte binding. Sensing studies demonstrate ultrasensitive and selective phosphate detection within remarkably low limits of detection of 178 × 10−12m (17.3 parts per trillion) in buffered samples and stable operation in seawater. This receptor‐based doping strategy, in conjunction with the versatility of EGOFETs for miniaturization and monolithic integration, enables manifold opportunities in diagnostics, healthcare, and environmental monitoring.