skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Bender, Michael A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 19, 2025
  2. Free, publicly-accessible full text available June 17, 2025
  3. Free, publicly-accessible full text available June 1, 2025
  4. Free, publicly-accessible full text available June 1, 2025
  5. A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N.

    more » « less
    Free, publicly-accessible full text available May 10, 2025
  6. The list-labeling problem is one of the most basic and well-studied algorithmic primitives in data structures, with an extensive literature spanning upper bounds, lower bounds, and data management applications. The classical algorithm for this problem, dating back to 1981, has amortized cost O(log bn). Subsequent work has led to improvements in three directions: low-latency (worst-case) bounds; high-throughput (expected) bounds; and (adaptive) bounds for important workloads.

    Perhaps surprisingly, these three directions of research have remained almost entirely disjoint---this is because, so far, the techniques that allow for progress in one direction have forced worsening bounds in the others. Thus there would appear to be a tension between worst-case, adaptive, and expected bounds. List labeling has been proposed for use in databases at least as early as PODS'99, but a database needs good throughput, response time, and needs to adapt to common workloads (e.g., bulk loads), and no current list-labeling algorithm achieve good bounds for all three.

    We show that this tension is not fundamental. In fact, with the help of new data-structural techniques, one can actually combine any three list-labeling solutions in order to cherry-pick the best worst-case, adaptive, and expected bounds from each of them.

    more » « less
    Free, publicly-accessible full text available May 10, 2025
  7. Free, publicly-accessible full text available April 11, 2025
  8. Free, publicly-accessible full text available January 8, 2025
  9. Free, publicly-accessible full text available January 1, 2025