skip to main content

Search for: All records

Creators/Authors contains: "Benetti, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    A nebular spectrum of the peculiar, low-luminosity type Ia supernova 2010lp is modelled in order to estimate the composition of the inner ejecta and to illuminate the nature of this event. Despite having a normally declining light curve, SN 2010lp was similar spectroscopically to SN 1991bg at early times. However, it showed a very unusual double-peaked [O i] $\lambda \lambda \, 6300,6363$ emission at late times (Taubenberger et al.). Modelling of the nebular spectrum suggests that a very small amount of oxygen (∼0.05 M⊙), expanding at very low speed (≲ 2000 km s−1) is sufficient to reproduce the observed emission. The rest of the nebula is not too dissimilar from SN 1991bg, except that SN 2010lp is slightly more luminous. The double-peaked [O i] emission suggests that SN 2010lp may be consistent with the merger or collision of two low-mass white dwarfs. The low end of the SN Ia luminosity sequence is clearly populated by diverse events, where different channels may contribute.

  2. Abstract

    We present optical and near-infrared photometric and spectroscopic observations of the fast-declining Type Ia supernova (SN) 2015bo. SN 2015bo is underluminous (MB= −17.50 ± 0.15 mag) and has a fast-evolving light curve (Δm15(B) = 1.91 ± 0.01 mag andsBV= 0.48 ± 0.01). It has a unique morphology in the observedVrcolor curve, where it is bluer than all other supernovae (SNe) in the comparison sample. A56Ni mass of 0.17 ± 0.03Mwas derived from the peak bolometric luminosity, which is consistent with its location on the luminosity–width relation. Spectroscopically, SN 2015bo is a cool SN in the Branch classification scheme. The velocity evolution measured from spectral features is consistent with 1991bg-like SNe. SN 2015bo has a SN twin (similar spectra)andsibling (same host galaxy), SN 1997cn. Distance moduli ofμ= 34.33 ± 0.01 (stat) ±0.11 (sys) mag andμ= 34.34 ± 0.04 (stat) ± 0.12 (sys) mag are derived for SN 2015bo and SN 1997cn, respectively. These distances are consistent at the 0.06σlevel with each other, and they are also consistent with distances derived using surface-brightness fluctuations and redshift-corrected cosmology. This suggests that fast-declining SNe could be accurate distance indicators, which should not be excluded from future cosmological analyses.


    The ultraviolet (UV) and near-infrared (NIR) photometric and optical spectroscopic observations of SN 2020acat covering ∼250 d after explosion are presented here. Using the fast rising photometric observations, spanning from the UV to NIR wavelengths, a pseudo-bolometric light curve was constructed and compared to several other well-observed Type IIb supernovae (SNe IIb). SN 2020acat displayed a very short rise time reaching a peak luminosity of $\mathrm{{\rm Log}_{10}}(L) = 42.49 \pm 0.17 \, \mathrm{erg \, s^{-1}}$ in only ∼14.6 ± 0.3 d. From modelling of the pseudo-bolometric light curve, we estimated a total mass of 56Ni synthesized by SN 2020acat of MNi = 0.13 ± 0.03 M⊙, with an ejecta mass of Mej = 2.3 ± 0.4 M⊙ and a kinetic energy of Ek = 1.2 ± 0.3 × 1051 erg. The optical spectra of SN 2020acat display hydrogen signatures well into the transitional period (≳ 100 d), between the photospheric and the nebular phases. The spectra also display a strong feature around 4900  Å that cannot be solely accounted for by the presence of the Fe ii 5018 line. We suggest that the Fe ii feature was augmented by He i 5016 and possibly by the presence of N ii 5005. From both photometric and spectroscopic analysis, we inferred that the progenitor of SN 2020acat was an intermediate-mass compact star with an MZAMS of 15–20 M⊙.

  4. Abstract

    The CNIa0.02 project aims to collect a complete, nearby sample of Type Ia supernovae (SNe Ia) light curves, and the SNe are volume-limited with host-galaxy redshiftszhost< 0.02. The main scientific goal is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches a peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, our target selection is effectively unbiased by host-galaxy properties. We perform multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 247 SNe from our project (including 148 SNe in the complete sample), and we derive parameters such as the peak fluxes, Δm15, andsBV.

  5. ABSTRACT We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches Mg = −21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 Å after ∼51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as Hα, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field Bp ≃ 6 × 1014 G, an initial period of the magnetar Pinitial ≃ 2.8 ms, an ejecta mass $M_{\rm ejecta}\simeq 9\, \mathrm{M}_\odot $ and an ejecta opacity $\kappa \simeq 0.08\, \mathrm{cm}^{2}\, \rm{g}^{-1}$. A CSM-interactionmore »scenario would imply a CSM mass $\simeq 5\, \mathrm{M}_\odot $ and an ejecta mass $\simeq 12\, \mathrm{M}_\odot $. Finally, the nebular spectrum of phase  + 187 d was modeled, deriving a mass of $\sim 10\, {\rm M}_\odot$ for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive ($40\, {\rm M}_\odot$) star.« less
  6. We present the bolometric lightcurve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment as well as the resolved stellar population surrounding AT 2016jbu, support a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu, and the photospheric radius inferred from the bolometric lightcurve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event, ejected material at ∼4500 km s−1. Whether the latter is the core-collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016M⊙. Using the bpass code, we explore a wide range of possible progenitor systems, and find that the majority of these are in binaries, some of which are undergoing mass transfer or common envelope evolution immediately prior to explosion. Finally, we use the snecmore »code to demonstrate that the low-energy explosion within some of these binary systems, together with sufficient CSM, can reproduce the overall morphology of the lightcurve of AT 2016jbu.« less
  7. We present the results from a high cadence, multi-wavelength observation campaign of AT 2016jbu, (aka Gaia16cfr) an interacting transient. This dataset complements the current literature by adding higher cadence as well as extended coverage of the lightcurve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbuunderwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ipwhose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbushows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1seen in narrow emission features from a slow moving CSM, and up to 10,000 km s−1seen in broad absorption from some high velocity material. Late-time spectra (∼ +1 year) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i and Ca ii. Strong asymmetric emission features, a bumpy lightcurve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of Hα among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curvemore »evolution of AT 2016jbusuggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.« less
  8. We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 10 40  erg s −1 and their total radiated energies are on the order of (0.3–3) × 10 47 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56 Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56 Ni masses on the order of 10 −4 to 10 −3   M ⊙ . The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emissionmore »with a typical velocity of a few hundred km s −1 , along with Ca II features. In particular, the [Ca  II ] λ 7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.« less
  9. ABSTRACT We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (Mr = −10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (∼6−8 d) to a peak of ${\it M}^{\rm max}_{g}= -17.84$ mag, followed by a very rapid decline of 7.94 ± 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of 56Co (between 100 and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 56Ni is ∼0.059 ± 0.003 M⊙. The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) Hα strong phase (<200 d); (2) Hα weak phase (between 200 and 350 d); and (3) Hα broad phase (>500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15–17 M⊙.