- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Benjamin, Nathan (3)
-
Kachru, Shamit (2)
-
Collier, Scott (1)
-
Kruthoff, Jorrit (1)
-
Ono, Ken (1)
-
Rolen, Larry (1)
-
Tripathy, Arnav (1)
-
Verlinde, Herman (1)
-
Zhang, Mengyang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract $$ T\overline{T} $$ T T ¯ deformed conformal field theories can be reformulated as worldsheet theories of non-critical strings. We use this correspondence to compute and study the $$ T\overline{T} $$ T T ¯ deformed partition sum of a symmetric product CFT. We find that it takes the form of a partition sum of a second quantized string theory with a worldsheet given by the product of the seed CFT and a gaussian sigma model with the two-torus as target space. We show that deformed symmetric product theory admits a natural UV completion that exhibits a strong weak coupling ℤ 2 duality that interchanges the momentum and winding numbers and maps the $$ T\overline{T} $$ T T ¯ -coupling λ to its inverse 1/ λ . The ℤ 2 duality is part of a full O(2, 2, ℤ)-duality group that includes a PSL(2, ℤ) acting on the complexified $$ T\overline{T} $$ T T ¯ coupling. The duality symmetry eliminates the appearance of complex energies at strong coupling for all seed CFTs with central charge c ≤ 6.more » « less
-
Benjamin, Nathan; Kachru, Shamit; Ono, Ken; Rolen, Larry (, arXiv.org)
-
Benjamin, Nathan; Kachru, Shamit; Tripathy, Arnav (, Letters in Mathematical Physics)
An official website of the United States government

Full Text Available