skip to main content

Search for: All records

Creators/Authors contains: "Benner, Steven A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nanopores are increasingly powerful tools for single molecule sensing, in particular, for sequencing DNA, RNA and peptides. This success has spurred efforts to sequence non-canonical nucleic acid bases and amino acids. While canonical DNA and RNA bases have pKas far from neutral, certain non-canonical bases, natural RNA modifications, and amino acids are known to have pKas near neutral pHs at which nanopore sequencing is typically performed. Previous reports have suggested that the nanopore signal may be sensitive to the protonation state of an individual moiety. We sequenced ion currents with the MspA nanopore using a single stranded DNA containing a single non-canonical DNA base (Z) at various pH conditions. The Z-base has a near-neutral pKa ∼ 7.8. We find that the measured ion current is remarkably sensitive to the protonation state of the Z-base. We demonstrate how nanopores can be used to localize and determine the pKa of individual moieties along a polymer. More broadly, these experiments provide a path to mapping different protonation sites along polymers and give insight in how to optimize sequencing of polymers that contain moieties with near-neutral pKas.

    more » « less
  2. Abstract

    Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and processed by multi-subunit cellular RNA polymerases (RNAPs) remains unknown. Here, we show thatE. coliRNAP selectively recognizes unnatural nucleobases in a six-letter expanded genetic system. High-resolution cryo-EM structures of three RNAP elongation complexes containing template-substrate UBPs reveal the shared principles behind the recognition of AEGIS and natural base pairs. In these structures, RNAPs are captured in an active state, poised to perform the chemistry step. At this point, the unnatural base pair adopts a Watson-Crick geometry, and the trigger loop is folded into an active conformation, indicating that the mechanistic principles underlying recognition and incorporation of natural base pairs also apply to AEGIS unnatural base pairs. These data validate the design philosophy of AEGIS unnatural basepairs. Further, we provide structural evidence supporting a long-standing hypothesis that pair mismatch during transcription occurs via tautomerization. Together, our work highlights the importance of Watson-Crick complementarity underlying the design principles of AEGIS base pair recognition.

    more » « less
  3. The first structural model of duplex DNA reported in 1953 by Watson & Crick presented the double helix in B-form, the form that genomic DNA exists in much of the time. Thus, artificial DNA seeking to mimic the properties of natural DNA should also be able to adopt B-form. Using a host–guest system in which Moloney murine leukemia virus reverse transcriptase serves as the host and DNA as the guests, we determined high-resolution crystal structures of three complexes including 5′-CTTBPPBBSSZZSAAG, 5′-CTTSSPBZPSZBBAAG and 5′-CTTZZPBSBSZPPAAG with 10 consecutive unnatural nucleobase pairs in B-form within self-complementary 16 bp duplex oligonucleotides. We refer to this ALternative Isoinformational ENgineered (ALIEN) genetic system containing two nucleobase pairs (P:Z, pairing 2-amino-imidazo-[1,2-a]-1,3,5-triazin-(8H)-4-one with 6-amino-5-nitro-(1H)-pyridin-2-one, andB:S, 6-amino-4-hydroxy-5-(1H)-purin-2-one with 3-methyl-6-amino-pyrimidin-2-one) as ALIEN DNA. We characterized both position- and sequence-specific helical, nucleobase pair and dinucleotide step parameters ofP:ZandB:Spairs in the context of B-form DNA. We conclude that ALIEN DNA exhibits structural features that vary with sequence. Further,Zcan participate in alternative stacking modes within a similar sequence context as captured in two different structures. This finding suggests that ALIEN DNA may have a larger repertoire of B-form structures than natural DNA.

    This article is part of the theme issue ‘Reactivity and mechanism in chemical and synthetic biology’.

    more » « less
  4. Abstract

    The 4-letter DNA alphabet (A, T, G, C) as found in Nature is an elegant, yet non-exhaustive solution to the problem of storage, transfer, and evolution of biological information. Here, we report on strategies for both writing and reading DNA with expanded alphabets composed of up to 12 letters (A, T, G, C, B, S, P, Z, X, K, J, V). For writing, we devise an enzymatic strategy for inserting a singular, orthogonal xenonucleic acid (XNA) base pair into standard DNA sequences using 2′-deoxy-xenonucleoside triphosphates as substrates. Integrating this strategy with combinatorial oligos generated on a chip, we construct libraries containing single XNA bases for parameterizing kmer basecalling models for commercially available nanopore sequencing. These elementary steps are combined to synthesize and sequence DNA containing 12 letters – the upper limit of what is accessible within the electroneutral, canonical base pairing framework. By introducing low-barrier synthesis and sequencing strategies, this work overcomes previous obstacles paving the way for making expanded alphabets widely accessible.

    more » « less
  5. Abstract

    Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting “preferred orientations” on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation, containing an unnatural nucleotide for studying novel base pair recognition. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle during data acquisition. These results reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.

    more » « less
  6. The ability of nucleic acids to catalyze reactions (as well as store and transmit information) is important for both basic and applied science, the first in the context of molecular evolution and the origin of life and the second for biomedical applications. However, the catalytic power of standard nucleic acids (NAs) assembled from just four nucleotide building blocks is limited when compared with that of proteins. Here, we assess the evolutionary potential of libraries of nucleic acids with six nucleotide building blocks as reservoirs for catalysis. We compare the outcomes of in vitro selection experiments toward RNA-cleavage activity of two nucleic acid libraries: one built from the standard four independently replicable nucleotides and the other from six, with the two added nucleotides coming from an artificially expanded genetic information system (AEGIS). Results from comparative experiments suggest that DNA libraries with increased chemical diversity, higher information density, and larger searchable sequence spaces are one order of magnitude richer reservoirs of molecules that catalyze the cleavage of a phosphodiester bond in RNA than DNA libraries built from a standard four-nucleotide alphabet. Evolved AEGISzymes with nitro-carrying nucleobase Z appear to exploit a general acid–base catalytic mechanism to cleave that bond, analogous to the mechanism of the ribonuclease A family of protein enzymes and heavily modified DNAzymes. The AEGISzyme described here represents a new type of catalysts evolved from libraries built from expanded genetic alphabets. 
    more » « less
  7. Chemists have now synthesized new kinds of DNA that add nucleotides to the four standard nucleotides (guanine, adenine, cytosine, and thymine) found in standard Terran DNA. Such “artificially expanded genetic information systems” are today used in molecular diagnostics; to support directed evolution to create medically useful receptors, ligands, and catalysts; and to explore issues related to the early evolution of life. Further applications are limited by the inability to directly sequence DNA containing nonstandard nucleotides. Nanopore sequencing is well-suited for this purpose, as it does not require enzymatic synthesis, amplification, or nucleotide modification. Here, we take the first steps to realize nanopore sequencing of an 8-letter “hachimoji” expanded DNA alphabet by assessing its nanopore signal range using the MspA (Mycobacterium smegmatis porin A) nanopore. We find that hachimoji DNA exhibits a broader signal range in nanopore sequencing than standard DNA alone and that hachimoji single-base substitutions are distinguishable with high confidence. Because nanopore sequencing relies on a molecular motor to control the motion of DNA, we then assessed the compatibility of the Hel308 motor enzyme with nonstandard nucleotides by tracking the translocation of single Hel308 molecules along hachimoji DNA, monitoring the enzyme kinetics and premature enzyme dissociation from the DNA. We find that Hel308 is compatible with hachimoji DNA but dissociates more frequently when walking over C-glycoside nucleosides, compared to N-glycosides. C-glycocide nucleosides passing a particular site within Hel308 induce a higher likelihood of dissociation. This highlights the need to optimize nanopore sequencing motors to handle different glycosidic bonds. It may also inform designs of future alternative DNA systems that can be sequenced with existing motors and pores. 
    more » « less
  8. null (Ed.)
  9. Abstract Reported here is a laboratory in vitro evolution (LIVE) experiment based on an artificially expanded genetic information system (AEGIS). This experiment delivers the first example of an AEGIS aptamer that binds to an isolated protein target, the first whose structural contact with its target has been outlined and the first to inhibit biologically important activities of its target, the protective antigen from Bacillus anthracis. We show how rational design based on secondary structure predictions can also direct the use of AEGIS to improve the stability and binding of the aptamer to its target. The final aptamer has a dissociation constant of ∼35 nM. These results illustrate the value of AEGIS-LIVE for those seeking to obtain receptors and ligands without the complexities of medicinal chemistry, and also challenge the biophysical community to develop new tools to analyze the spectroscopic signatures of new DNA folds that will emerge in synthetic genetic systems replacing standard DNA and RNA as platforms for LIVE. 
    more » « less