Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate change is generating sufficient risk for nation‐states and citizens throughout the Arctic to warrant potentially radical geoengineering solutions. Currently, geoengineering solutions such as surface albedo modification or aerosol deployment are in the early stages of testing and development. Due to the scale of deployments necessary to enact change, and their preliminary nature, these methods are likely to result in unforeseen consequences. These consequences may range in severity from local ecosystem impacts to large scale changes in available solar energy. The Arctic is an area that is experiencing rapid change, increased development, and exploratory interest, and proposed solutions have the potential to produce new risks to both natural and human systems. This article examines potential security and ethical considerations of geoengineering solutions in the Arctic from the perspectives of securitization, consequentialism, and risk governance ap‐ proaches, and argues that proactive and preemptive frameworks at the international level, and es‐ pecially the application of risk governance approaches, will be needed to prevent or limit negative consequences resulting from geoengineering efforts. Utilizing the unique structures already present in Arctic governance provides novel options for addressing these concerns from both the perspec‐ tive of inclusive governance and through advancing the understanding of uncertainty analysis and precautionary principles.more » « less
-
Scientific cooperation is a well-supported narrative and theme, but in reality, presents many challenges and counter-productive difficulties. Moreover, data sharing specifically represents one of the more critical cooperation requirements, as part of the “scientific method [which] allows for verification of results and extending research from prior results.” One of the important pieces of the climate change puzzle is permafrost. Currently, most permafrost data remain fragmented and restricted to national authorities, including scientific institutes. Important datasets reside in various government or university labs, where they remain largely unknown or where access restrictions prevent effective use. A lack of shared research—especially data—significantly reduces effectiveness of understanding permafrost overall. Whereas it is not possible for a nation to effectively conduct the variety of modeling and research needed to comprehensively understand impacts to permafrost, a global community can. However, decision and policy makers, especially on the international stage, struggle to understand how best to anticipate and prepare for changes, and thus support for scientific recommendations during policy development. This article explores the global data systems on permafrost, which remain sporadic, rarely updated, and with almost nothing about the subsea permafrost publicly available. The authors suggest that the global permafrost monitoring system should be real time (within technical and reasonable possibility), often updated and with open access to the data. Following a brief background, this article will offer three supporting themes, 1) the current state of permafrost data, 2) rationale and methods to share data, and 3) implications for global and national interests.more » « less
-
null (Ed.)While the world continues to work toward an understanding and projections of climate change impacts, the Arctic increasingly becomes a critical component as a bellwether region. Scientific cooperation is a well-supported narrative and theme in general, but in reality, presents many challenges and counter-productive difficulties. Moreover, data sharing specifically represents one of the more critical cooperation requirements, as part of the “scientific method [which] allows for verification of results and extending research from prior results”. One of the important pieces of the climate change puzzle is permafrost. In general, observational data on permafrost characteristics are limited. Currently, most permafrost data remain fragmented and restricted to national authorities, including scientific institutes. The preponderance of permafrost data is not available openly—important datasets reside in various government or university labs, where they remain largely unknown or where access restrictions prevent effective use. Although highly authoritative, separate data efforts involving creation and management result in a very incomplete picture of the state of permafrost as well as what to possibly anticipate. While nations maintain excellent individual permafrost research programs, a lack of shared research—especially data—significantly reduces effectiveness of understanding permafrost overall. Different nations resource and employ various approaches to studying permafrost, including the growing complexity of scientific modeling. Some are more effective than others and some achieve different purposes than others. Whereas it is not possible for a nation to effectively conduct the variety of modeling and research needed to comprehensively understand impacts to permafrost, a global community can. In some ways, separate scientific communities are not necessarily concerned about sharing data—their work is secured. However, decision and policy makers, especially on the international stage, struggle to understand how best to anticipate and prepare for changes, and thus support for scientific recommendations during policy development. To date, there is a lack of research exploring the need to share circumpolar permafrost data. This article will explore the global data systems on permafrost, which remain sporadic, rarely updated, and with almost nothing about the subsea permafrost publicly available. The authors suggest that the global permafrost monitoring system should be real time (within technical and reasonable possibility), often updated and with open access to the data (general way of representing data required). Additionally, it will require robust co-ordination in terms of accessibility, funding, and protocols to avoid either duplication and/or information sharing. Following a brief background, this article will offer three supporting themes, (1) the current state of permafrost data, (2) rationale and methods to share data, and (3) implications for global and national interests.more » « less