- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bennett, Jake_S (1)
-
Bryan, Greg_L (1)
-
Fielding, Drummond_B (1)
-
Kim, Chang-Goo (1)
-
Ostriker, Eve_C (1)
-
Smith, Matthew_C (1)
-
Somerville, Rachel_S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Arkenstone is a new scheme that allows multiphase, stellar feedback-driven winds to be included in coarse resolution cosmological simulations. The evolution of galactic winds and their subsequent impact on the circumgalactic medium are altered by exchanges of mass, energy, momentum, and metals between their component phases. These exchanges are governed by complex, small-scale physical processes that cannot be resolved in cosmological simulations. In this second presentation paper, we describe Arkenstone’s novel cloud particle approach for modelling unresolvable cool clouds entrained in hot, fast winds. This general framework allows models of the cloud–wind interaction, derived from state-of-the-art high-resolution simulations, to be applied in a large-scale context. In this work, we adopt a cloud evolution model that captures simultaneous cloud mass loss to and gain from the ambient hot phase via turbulent mixing and radiative cooling, respectively. We demonstrate the scheme using non-cosmological idealized simulations of a galaxy with a realistic circumgalactic medium component, using the arepo code. We show that the ability of a high-specific energy wind component to perform preventative feedback may be limited by heavy loading of cool clouds coupled into it. We demonstrate that the diverging evolution of clouds of initially differing masses leads to a complex velocity field for the cool phase and a cloud mass function that varies both spatially and temporally in a non-trivial manner. These latter two phenomena can manifest in the simulation because of our choice of a Lagrangian discretization of the cloud population, in contrast to other proposed schemes.more » « less
An official website of the United States government
