Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract To understand how behaviors arise in animals, it is necessary to investigate both the neural circuits and the biomechanics of the periphery. A tractable model system for studying multifunctional control is the feeding apparatus of the marine molluskAplysia californica. Previousin silicoandin robotomodels have investigated how the nervous and muscular systems interact in this system. However, these models are still limited in their ability to matchin vivodata both qualitatively and quantitatively. We introduce a new neuromechanical model ofAplysiafeeding that combines a modified version of a previously developed neural model with a novel biomechanical model that better reflects the anatomy and kinematics ofAplysiafeeding. The model was calibrated using a combination of previously measured biomechanical parameters and hand-tuning to behavioral data. Using this model, simulated feeding experiments were conducted, and the resulting behavioral metrics were compared to animal data. The model successfully produces three key behaviors seen inAplysiaand demonstrates a good quantitative agreement with biting and swallowing behaviors. Additional work is needed to match rejection behavior quantitatively and to reflect qualitative observations related to the relative contributions of two key muscles, the hinge and I3. Future improvements will focus on incorporating the effects of deformable 3D structures in the simulated buccal mass.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available December 13, 2025
-
Free, publicly-accessible full text available December 13, 2025
-
Supplying continuous power is a major challenge in the creation and deployment of sensors and small robots for marine applications. Glucose-based enzymatic fuel cells (EFCs) are a possible solution for sustainably powering such devices when mounted on or implanted in living organisms. The two main barriers to developing implantable EFCs for marine organisms are their power output and in vivo feasibility. Ideally, an in vivo EFC should be minimally invasive, remain mechanically secure, and output relatively consistent power over a predefined lifespan, ranging from weeks to months. The shape and chemistry of EFC electrodes can each contribute to or detract from the overall power production potential of the cells. This paper assesses the feasibility of EFCs using the marine sea slug, Aplysia californica’s, hemolymph as an analyte and presents methods to enhance the power produced by EFCs by altering their chemistry and form factor. We found that perfluorodecalin-soaked cathodes and spirally-rolled cells demonstrated increased power output compared to their respective control specimens. Cells tested in Aplysia saline mirrored the power output trends of cells tested in hemolymph but with higher power output. This work suggests the feasibility of creating implantable EFCs for marine sea slugs that could one day serve as sustainable biohybrid robotic platforms.more » « less
An official website of the United States government
