skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bensinger, J. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ATLAS tile calorimeter (TileCal) is the hadronic sampling calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider (LHC). This paper gives an overview of the calorimeter’s operation and performance during the years 2015–2018 (Run 2). In this period, ATLAS collected proton–proton collision data at a centre-of-mass energy of 13 TeV and the TileCal was 99.65% efficient for data-taking. The signal reconstruction, the calibration procedures, and the detector operational status are presented. The performance of two ATLAS trigger systems making use of TileCal information, the minimum-bias trigger scintillators and the tile muon trigger, is discussed. Studies of radiation effects allow the degradation of the output signals at the end of the LHC and HL-LHC operations to be estimated. Finally, the TileCal response to isolated muons, hadrons and jets from proton–proton collisions is presented. The energy and time calibration methods performed excellently, resulting in good stability and uniformity of the calorimeter response during Run 2. The setting of the energy scale was performed with an uncertainty of 2%. The results demonstrate that the performance is in accordance with specifications defined in the Technical Design Report. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140 fb 1 of proton-proton collision data at s = 13 TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5 σ , and the observed (expected) upper limit set on the cross section for vector-boson fusion W H production is 9.0 (8.7) times the standard model value at 95% confidence level. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  3. Abstract A search for leptoquark pair production decaying into$$te^- \bar{t}e^+$$ t e - t ¯ e + or$$t\mu ^- \bar{t}\mu ^+$$ t μ - t ¯ μ + in final states with multiple leptons is presented. The search is based on a dataset ofppcollisions at$$\sqrt{s}=13~\text {TeV} $$ s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$$^{-1}$$ - 1 . Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from ab-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into$$te^{-}$$ t e - ($$t\mu ^{-}$$ t μ - ), the corresponding lower limit on the scalar mixed-generation leptoquark mass$$m_{\textrm{LQ}_{\textrm{mix}}^{\textrm{d}}}$$ m LQ mix d is at 1.58 (1.59) TeV and on the vector leptoquark mass$$m_{{\tilde{U}}_1}$$ m U ~ 1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. Abstract A search is reported for long-lived dark photons with masses between 0.1 GeV and 15 GeV, from exotic decays of Higgs bosons produced via vector-boson-fusion. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are probed. This search uses the full LHC Run 2 (2015–2018) data sample collected in proton–proton collisions at$$\sqrt{s}=13$$ s = 13 TeV, corresponding to an integrated luminosity of 139$$fb^{-1}$$ f b - 1 . Dominant backgrounds from Standard Model processes and non-collision sources are estimated using data-driven techniques. The observed event yields in the signal regions are consistent with the expected background. Upper limits on the Higgs boson to dark photon branching fraction are reported as a function of the dark photon mean proper decay length or of the dark photon mass and the coupling between the Standard Model and the potential dark sector. This search is combined with previous ATLAS searches obtained in the gluon–gluon fusion andWHproduction modes. A branching fraction above 10% is excluded at 95% CL for a 125 GeV Higgs boson decaying into two dark photons for dark photon mean proper decay lengths between 173 and 1296 mm and mass of 10 GeV. 
    more » « less
  5. A<sc>bstract</sc> This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and correspond to an integrated luminosity of 139 fb−1of proton-proton collisions at a centre-of-mass energy of$$ \sqrt{s} $$ s = 13 TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either$$ {\tilde{t}}_1\to c{\overset{\sim }{\chi}}_1^0 $$ t ~ 1 c χ ~ 1 0 or$$ {\tilde{t}}_1\to t{\overset{\sim }{\chi}}_1^0 $$ t ~ 1 t χ ~ 1 0 , where the$$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of$$ tc+{E}_T^{\textrm{miss}} $$ tc + E T miss . Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the$$ m\left({\tilde{t}}_1\right) $$ m t ~ 1 vs.$$ m\left({\overset{\sim }{\chi}}_1^0\right) $$ m χ ~ 1 0 plane and, in addition, limits on the branching ratio of the$$ {\tilde{t}}_1\to t{\overset{\sim }{\chi}}_1^0 $$ t ~ 1 t χ ~ 1 0 decay as a function ofm($$ {\tilde{t}}_1 $$ t ~ 1 ) are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate. 
    more » « less
  6. A search for high-mass resonances decaying into a τ -lepton and a neutrino using proton-proton collisions at a center-of-mass energy of s = 13 TeV is presented. The full run 2 data sample corresponding to an integrated luminosity of 139 fb 1 recorded by the ATLAS experiment in the years 2015–2018 is analyzed. The τ -lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between the τ -lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on the W τ ν production cross section. Heavy W vector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard Model W boson. For nonuniversal couplings, W bosons are excluded for masses less than 3.5–5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross section times branching ratio are determined as a function of the lower threshold on the transverse mass of the τ -lepton and missing transverse momentum. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
  7. This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into b b ¯ , leading to a reconstructed final state with at least three energetic b -jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 ( 139 ) fb 1 of s = 13 TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
  8. A<sc>bstract</sc> A summary of the constraints from searches performed by the ATLAS collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb−1of proton-proton data at a centre-of-mass energy of$$ \sqrt{s} $$ s = 13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, whereR-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson andZboson ‘funnel regions’, where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented. 
    more » « less
  9. A<sc>bstract</sc> A search for events with one top quark and missing transverse momentum in the final state is presented. The fully hadronic decay of the top quark is explored by selecting events with a reconstructed boosted top-quark topology produced in association with large missing transverse momentum. The analysis uses 139 fb−1of proton-proton collision data at a centre-of-mass energy of$$ \sqrt{s} $$ s = 13 TeV recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The results are interpreted in the context of simplified models for Dark Matter particle production and the single production of a vector-likeTquark. Without significant excess relative to the Standard Model expectations, 95% confidence-level upper limits on the corresponding cross-sections are obtained. The production of Dark Matter particles in association with a single top quark is excluded for masses of a scalar (vector) mediator up to 4.3 (2.3) TeV, assumingmχ= 1 GeV and the model couplingsλq= 0.6 andλχ= 0.4 (a= 0.5 andgχ= 1). The production of a single vector-likeTquark is excluded for masses below 1.8 TeV assuming a coupling to the top quarkκT= 0.5 and a branching ratio forT → Ztof 25%. 
    more » « less