skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Benson, Aleyna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Septin proteins contribute to many eukaryotic processes involving cellular membranes. In the budding yeast Saccharomyces cerevisiae , septin hetero‐oligomers interact with the plasma membrane (PM) almost exclusively at the future site of cytokinesis. While multiple mechanisms of membrane recruitment have been identified, including direct interactions with specific phospholipids and curvature‐sensitive interactions via amphipathic helices, these do not fully explain why yeast septins do not localize all over the inner leaflet of the PM. While engineering an inducible split‐yellow fluorescent protein (YFP) system to measure the kinetics of yeast septin complex assembly, we found that ectopic co‐overexpression of two tagged septins, Cdc3 and Cdc10, resulted in nearly uniform PM localization, as well as perturbation of endogenous septin function. Septin localization and function in gametogenesis were also perturbed. PM localization required the C‐terminal YFP fragment fused to the C terminus of Cdc3, the septin‐associated kinases Cla4 and Gin4, and phosphotidylinositol‐4,5‐bis‐phosphate (PI[4,5]P 2 ), but not the putative PI(4,5)P 2 ‐binding residues in Cdc3. Endogenous Cdc10 was recruited to the PM, likely contributing to the functional interference. PM‐localized septins did not exchange with the cytosolic pool, indicative of stable polymers. These findings provide new clues as to what normally restricts septin localization to specific membranes. 
    more » « less