- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
02000010000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bento, Jose (3)
-
Ioannidis, Stratis (2)
-
Gao, Jasmin (1)
-
Jia, Bei (1)
-
Moharrer, Armin (1)
-
Ray, Surjyendu (1)
-
Safavi, Sam (1)
-
Wang, Shikun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jia, Bei ; Ray, Surjyendu ; Safavi, Sam ; Bento, Jose ( , Advances in Neural Information Processing Systems 31 (NIPS 2018))Several algorithms build on the perfect phylogeny model to infer evolutionary trees. This problem is particularly hard when evolutionary trees are inferred from the fraction of genomes that have mutations in different positions, across different samples. Existing algorithms might do extensive searches over the space of possible trees. At the center of these algorithms is a projection problem that assigns a fitness cost to phylogenetic trees. In order to perform a wide search over the space of the trees, it is critical to solve this projection problem fast. In this paper, we use Moreau's decomposition for proximal operators, and a tree reduction scheme, to develop a new algorithm to compute this projection. Our algorithm terminates with an exact solution in a finite number of steps, and is extremely fast. In particular, it can search over all evolutionary trees with fewer than 11 nodes, a size relevant for several biological problems (more than 2 billion trees) in about 2 hours.more » « less
-
Bento, Jose ; Ioannidis, Stratis ( , SIAM International Conference on Data Mining)Important data mining problems such as nearest-neighbor search and clustering admit theoretical guarantees when restricted to objects embedded in a metric space. Graphs are ubiquitous, and clustering and classification over graphs arise in diverse areas, including, e.g., image processing and social networks. Unfortunately, popular distance scores used in these applications, that scale over large graphs, are not metrics and thus come with no guarantees. Classic graph distances such as, e.g., the chemical and the CKS distance are arguably natural and intuitive, and are indeed also metrics, but they are intractable: as such, their computation does not scale to large graphs. We define a broad family of graph distances, that includes both the chemical and the CKS distance, and prove that these are all metrics. Crucially, we show that our family includes metrics that are tractable. Moreover, we extend these distances by incorporating auxiliary node attributes, which is important in practice, while maintaining both the metric property and tractability.more » « less