Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tween 20 is frequently added to particle suspensions for reducing the particle–wall adhesion and particle–particle aggregation in microfluidic devices. However, the influences of Tween 20 on the fluid and particle behaviors have been largely ignored. We present in this work the first experimental study of the effects of Tween 20 addition on the electrokinetic transport of fluids and particles in a polydimethylsiloxane microchannel. We find that adding 0.1% v/v Tween 20 to a buffer solution can significantly reduce the electroosmotic mobility as well as the electrokinetic and electrophoretic mobilities of polystyrene particles and yeast cells. Further increasing the Tween 20 concentration within the range typically used in microfluidic applications continues reducing these mobility values, but at a smaller rate. Our finding suggests that Tween 20 should be used with care in electrokinetic microdevices when the flow rate or particle/cell throughput is an important parameter.
Free, publicly-accessible full text available March 21, 2025 -
Abstract Nonlinear electrophoresis offers advantageous prospects in microfluidic manipulation of particles over linear electrophoresis. Existing theories established for this phenomenon are entirely based on spherical particle models, some of which have been experimentally verified. However, there is no knowledge on if and how the particle shape may affect the nonlinear electrophoretic behavior. This work presents an experimental study of the nonlinear electrophoretic velocities of rigid peanut‐ and pear‐shaped particles in a rectangular microchannel, which are compared with rigid spherical particles of similar diameter and surface charge in terms of the particle slenderness. We observe a decrease in the nonlinear electrophoretic mobility, whereas an increase in the nonlinear index of electric field when the particle slenderness increases from the peanut‐ to pear‐shaped and spherical particles. The values of the nonlinear index for the nonspherical particles are, however, still within the theoretically predicted range for spherical particles. We also observe an enhanced nonlinear electrophoretic behavior in a lower concentration buffer solution regardless of the particle shape.
-
Abstract In classical electrokinetics, the electrophoretic velocity of a dielectric particle is a linear function of the applied electric field. Theoretical studies have predicted the onset of nonlinear electrophoresis at high electric fields because of the nonuniform surface conduction over the curved particle. However, experimental studies have been left behind and are insufficient for a fundamental understanding of the parametric effects on nonlinear electrophoresis. We present in this work a systematic experimental study of the effects of buffer concentration, particle size, and particle zeta potential on the electrophoretic velocity of polystyrene particles in a straight rectangular microchannel for electric fields of up to 3 kV/cm. The measured nonlinear electrophoretic particle velocity is found to exhibit a 2(±0.5)‐order dependence on the applied electric field, which appears to be within the theoretically predicted 3‐ and 3/2‐order dependences for low and high electric fields, respectively. Moreover, the obtained nonlinear electrophoretic particle mobility increases with decreasing buffer concentration (for the same particle) and particle size (for particles with similar zeta potentials) or increasing particle zeta potential (for particles with similar sizes). These observations are all consistent with the theoretical predictions for high electric fields.
-
Abstract Recent studies have demonstrated the strong influences of fluid rheological properties on insulator‐based dielectrophoresis (iDEP) in single‐constriction microchannels. However, it is yet to be understood how iDEP in non‐Newtonian fluids depends on the geometry of insulating structures. We report in this work an experimental study of fluid rheological effects on streaming DEP in a post‐array microchannel that presents multiple contractions and expansions. The iDEP focusing and trapping of particles in a viscoelastic polyethylene oxide solution are comparable to those in a Newtonian buffer, which is consistent with the observations in a single‐constriction microchannel. Similarly, the insignificant iDEP effects in a shear‐thinning xanthan gum solution also agree with those in the single‐constriction channel except that gel‐like structures are observed to only form in the post‐array microchannel under large DC electric fields. In contrast, the iDEP effects in both viscoelastic and shear‐thinning polyacrylamide solution are significantly weaker than in the single‐constriction channel. Moreover, instabilities occur in the electroosmotic flow and appear to be only dependent on the DC electric field. These phenomena may be associated with the dynamics of polymers as they are electrokinetically advected around and through the posts.
-
Abstract Insulator‐based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non‐Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning‐induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.