- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bentz, Philip C (1)
-
Bentz, Philip C. (1)
-
Burrows, John (1)
-
Burrows, Sandra (1)
-
Carey, Sarah B (1)
-
Crawford, Seth (1)
-
Grimwood, Jane (1)
-
Harkess, Alex (1)
-
Kanno, Akira (1)
-
Leebens‐Mack, Jim (1)
-
Liu, Zhengjie (1)
-
Mao, Zichao (1)
-
Monserrate, Luis A (1)
-
Quade, Michael A (1)
-
Smart, Lawrence B (1)
-
Stack, George M (1)
-
Toth, Jacob A (1)
-
Wilkerson, Dustin G (1)
-
Yang, Jun‐Bo (1)
-
Zhang, Le (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Genomic characterization of Cannabis sativa has accelerated rapidly in the last decade as sequencing costs have decreased and public and private interest in the species has increased. Here, we present seven new chromosome-level haplotype-phased genomes of C. sativa. All of these genotypes were alive at the time of publication, and several have numerous years of associated phenotype data. We performed a k-mer-based pangenome analysis to contextualize these assemblies within over 200 existing assemblies. This allowed us to identify unique haplotypes and genomic diversity among Cannabis sativa genotypes. We leveraged linkage maps constructed from F2 progeny of two of the assembled genotypes to characterize the recombination rate across the genome showing strong periphery-biased recombination. Lastly, we re-aligned a bulk segregant analysis dataset for the major-effect flowering locus Early1 to several of the new assemblies to evaluate the impact of reference bias on the mapping results and narrow the locus to a smaller region of the chromosome. These new assemblies, combined with the continued propagation of the genotypes, will contribute to the growing body of genomic resources for C. sativa to accelerate future research efforts.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Bentz, Philip C.; Liu, Zhengjie; Yang, Jun‐Bo; Zhang, Le; Burrows, Sandra; Burrows, John; Kanno, Akira; Mao, Zichao; Leebens‐Mack, Jim (, American Journal of Botany)Abstract PremiseDioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genusAsparagus(Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. MethodsWe use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genusAsparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. ResultsWe estimate that dioecy evolved once or twice approximately 2.78−3.78 million years ago inAsparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. ConclusionsOur findings support previous work implicating a young age and the possibility of two origins of dioecy inAsparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy inAsparagusapproximately 2.78−3.78 million years ago.more » « less