skip to main content

Search for: All records

Creators/Authors contains: "Berger, Travis A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Dynamical evolution within planetary systems can cause planets to be engulfed by their host stars. Following engulfment, the stellar photosphere abundance pattern will reflect accretion of rocky material from planets. Multistar systems are excellent environments to search for such abundance trends because stellar companions form from the same natal gas cloud and are thus expected to share primordial chemical compositions to within 0.03–0.05 dex. Abundance measurements have occasionally yielded rocky enhancements, but a few observations targeted known planetary systems. To address this gap, we carried out a Keck-HIRES survey of 36 multistar systems, where at least one star is a known planet host. We found that only HAT-P-4 exhibits an abundance pattern suggestive of engulfment but is more likely primordial based on its large projected separation (30 000 ± 140 au) that exceeds typical turbulence scales in molecular clouds. To understand the lack of engulfment detections among our systems, we quantified the strength and duration of refractory enrichments in stellar photospheres using mesa stellar models. We found that observable signatures from 10 M⊕ engulfment events last for ∼90 Myr in 1 M⊙ stars. Signatures are largest and longest lived for 1.1–1.2 M⊙ stars, but are no longer observable ∼2 Gyr post-engulfment. This indicates that engulfment will rarely be detected in systems that are several Gyr old.

    more » « less
  2. Abstract

    Binary stars are ubiquitous; the majority of solar-type stars exist in binaries. Exoplanet occurrence rate is suppressed in binaries, but some multiples do still host planets. Binaries cause observational biases in planet parameters, with undetected multiplicity causing transiting planets to appear smaller than they truly are. We have analyzed the properties of a sample of 119 planet-host binary stars from the Kepler mission to study the underlying population of planets in binaries that fall in and around the radius valley, which is a demographic feature in period–radius space that marks the transition from predominantly rocky to predominantly gaseous planets. We found no statistically significant evidence for a radius gap for our sample of 122 planets in binaries when assuming that the primary stars are the planet hosts, with a low probability (p< 0.05) of the binary planet sample radius distribution being consistent with the single-star population of small planets via an Anderson–Darling test. These results reveal demographic differences in the planet size distribution between planets in binary and single stars for the first time, showing that stellar multiplicity may fundamentally alter the planet formation process. A larger sample and further assessment of circumprimary versus circumsecondary transits is needed to either validate this nondetection or explore other scenarios, such as a radius gap with a location that is dependent on binary separation.

    more » « less
  3. Abstract

    Current spectroscopic surveys are producing large catalogs of chemical abundances for stars of all types. The yttrium-to-magnesium ratio, [Y/Mg], has emerged as a candidate age indicator for solar twins in the local stellar neighborhood. However, it is unclear whether it is a viable age diagnostic for more diverse stellar types, so we investigate [Y/Mg] as an age indicator for the FGK-type planet host stars observed by Kepler. We find that the [Y/Mg] “Clock” is most precise for solar twins, with a [Y/Mg]/age slope ofm= −0.0370 ±0.0071 dex Gyr−1andσAge= 2.6 Gyr. We attribute the lower precision compared to literature results to nonsolar twins contaminating our solar twin sample and recommend a 1.5 Gyr systematic uncertainty for stellar ages derived with any [Y/Mg]–Age relation. We also analyzed the [Y/Mg] Clock as a function ofTeff,logg, and metallicity individually and find no strong trends, but we compute statistically significant [Y/Mg]–Age relations for subsamples defined by ranges inTeff,logg, and metallicity. Finally, we compare [Y/Mg] and rotation ages and find statistically similar trends as for isochrone ages, although we find that rotation ages perform better for GK dwarfs while isochrones perform better for FG subgiants. We conclude that the [Y/Mg] Clock is most precise for solar twins and analogs but is also a useful age diagnostic for FGK stars.

    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract Asteroseismology of bright stars has become increasingly important as a method to determine the fundamental properties (in particular ages) of stars. The Kepler Space Telescope initiated a revolution by detecting oscillations in more than 500 main-sequence and subgiant stars. However, most Kepler stars are faint and therefore have limited constraints from independent methods such as long-baseline interferometry. Here we present the discovery of solar-like oscillations in α Men A, a naked-eye ( V = 5.1) G7 dwarf in TESS’s southern continuous viewing zone. Using a combination of astrometry, spectroscopy, and asteroseismology, we precisely characterize the solar analog α Men A ( T eff = 5569 ± 62 K, R ⋆ = 0.960 ± 0.016 R ⊙ , M ⋆ = 0.964 ± 0.045 M ⊙ ). To characterize the fully convective M dwarf companion, we derive empirical relations to estimate mass, radius, and temperature given the absolute Gaia magnitude and metallicity, yielding M ⋆ = 0.169 ± 0.006 M ⊙ , R ⋆ = 0.19 ± 0.01 R ⊙ , and T eff = 3054 ± 44 K. Our asteroseismic age of 6.2 ± 1.4 (stat) ± 0.6 (sys) Gyr for the primary places α Men B within a small population of M dwarfs with precisely measured ages. We combined multiple ground-based spectroscopy surveys to reveal an activity cycle of P = 13.1 ± 1.1 yr for α Men A, a period similar to that observed in the Sun. We used different gyrochronology models with the asteroseismic age to estimate a rotation period of ∼30 days for the primary. Alpha Men A is now the closest ( d = 10 pc) solar analog with a precise asteroseismic age from space-based photometry, making it a prime target for next-generation direct-imaging missions searching for true Earth analogs. 
    more » « less