skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Berkson, Jacque"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The use of laser powder bed fusion (LPBF) for faster and more customized manufacturing has grown significantly. However, LPBF parts often require welding to other components, raising concerns about their weldability due to differences in microstructure compared to conventionally manufactured parts. Despite its importance, research on the weldability of additive manufacturing materials remains limited. This study aims to evaluate the susceptibility of LPBF 316L stainless steel to weld solidification cracking using transverse varestraint testing and compare results with conventional 316L. Tests were conducted across strain levels from 0.5 to 7%, revealing a saturated strain of 4%, with maximum crack length (MCL), maximum crack distance (MCD), and total number of cracks (TNC) of approximately 0.36 mm and 31, respectively. Compared to existing literature, LPBF 316L produced with optimized printing parameters and low nickel equivalent content exhibited higher resistance to weld solidification cracking, reflected in lower MCL and MCD values. Cracks initiated at the solidus interface and propagated along the ferrite–austenite boundary under strain. Microstructural changes were observed after testing, transitioning from cellular austenitic solidification in LPBF to a skeletal ferrite-austenitic mode due to material remelting and slower cooling rates. These findings highlight that reduced nickel equivalent, alongside optimized printing parameters, contribute to enhanced weld solidification cracking resistance in LPBF 316L. This study advances understanding of the weldability of LPBF materials. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract Coke drums are critical units in the delayed coking process to produce lightweight oil products from heavy residual oil. The fulfillment of the designed coke drum lifetime is often obstructed by low-cycle fatigue damage over cyclic thermal and mechanical loading. Considering the tremendous cost of drum replacement and production loss due to shutdown, the coke drum lifetime extension is of great economic significance in the oil and gas industry. A research project regarding coke drum fabrication and repair was initiated in the Manufacturing & Materials Joining Innovation Center (MA2JIC) at the Ohio State University in 2016. The project includes two phases of work. The first phase of the study (2016∼2019) focused on the external weld repair of coke drum materials, while the ongoing second phase of the study (2019∼2023) addressed coke drum fabrication and repair. A novel low-cycle fatigue testing approach was developed using Gleeble thermo-mechanical simulator and was applied to evaluating the performance of coke drum base materials and welded joints under cyclic deformation. The project goal is to improve the fundamental understanding of materials and joint performance that allows the optimization of coke drum design, fabrication, and repair. In this technical paper, the key methodologies and achievements of the project will be introduced, and some future work will be proposed for the next step. 
    more » « less