- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Bernhardt, Peter (2)
-
Buchmann, Stephen (1)
-
Jankauski, Mark (1)
-
Li, De-Zhu (1)
-
Mulholland, Margaret R (1)
-
Song, Bongkeun (1)
-
Tamborski, Joseph J (1)
-
Vallejo-Marín, Mario (1)
-
Wang, Hong (1)
-
Wilson, Stephanie J (1)
-
Wu, Bentao (1)
-
Wu, Jianing (1)
-
Xu, Yuanqing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The tidal tributaries of the lower Chesapeake Bay experience seasonally recurring harmful algal blooms and the significance of submarine groundwater discharge (SGD) as a nutrient vector is largely unknown. Here, we determined seasonal SGD nutrient loads in two tributaries with contrasting hydrodynamic conditions, river‐fed (York River) vs. tidally dominated (Lafayette River). Radon surveys were performed in each river to quantify SGD at the embayment‐scale during spring and fall 2021. Total SGD was determined from a222Rn mass balance and Monte Carlo simulations. Submarine groundwater discharge rates differed by a factor of two during spring (Lafayette = 11 ± 17 cm d−1; York = 6 ± 10 cm d−1) and a factor of six during fall (Lafayette = 19 ± 27 cm d−1; York = 3 ± 7 cm d−1). Groundwater N concentrations and fluxes varied seasonally in the York (4–7 mmol N m−2d−1). In the Lafayette River, seasonal N fluxes (22–37 mmol N m−2d−1) were driven by seasonal water exchange rates, likely due to recurrent saltwater intrusion. Submarine groundwater discharge–derived nutrient fluxes were orders of magnitude greater than riverine inputs and runoff in each system. Additionally, sediment N removal by denitrification and anaerobic ammonium oxidation would only remove ~ 1–11% of dissolved inorganic nitrogen supplied through SGD. The continued recurrence of harmful algal blooms in the Bay's tidal tributaries may be indicative of an under‐accounting of submarine groundwater‐borne nutrient sources. This study highlights the importance of including SGD in water quality models used to advise restoration efforts in the Chesapeake Bay region and beyond.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Xu, Yuanqing; Wu, Bentao; Vallejo-Marín, Mario; Bernhardt, Peter; Jankauski, Mark; Li, De-Zhu; Buchmann, Stephen; Wu, Jianing; Wang, Hong (, Science China Life Sciences)Free, publicly-accessible full text available March 12, 2026
An official website of the United States government
