skip to main content

Search for: All records

Creators/Authors contains: "Bernussi, Ayrton A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Polysulfide shuttle effect, causing extremely low Coulombic efficiency and cycling stability, is one of the toughest challenges hindering the development of practical lithium sulfur batteries (LSBs). Introducing catalytic nanostructures to stabilize the otherwise soluble polysulfides and promote their conversion to solids has been proved to be an effective strategy in attacking this problem, but the heavy mass of catalysts often results in a low specific energy of the whole electrode. Herein, by designing and synthesizing a free-standing edge-oriented NiCo 2 S 4 /vertical graphene functionalized carbon nanofiber (NCS/EOG/CNF) thin film as a catalytic overlayer incorporated in the sulfur cathode, the polysulfide shuttle effect is largely alleviated, revealed by the enhanced electrochemical performance measurements and the catalytic function demonstration. Different from other reports, the NiCo 2 S 4 nanosheets synthesized here have a 3-D edge-oriented structure with fully exposed edges and easily accessible in-plane surfaces, thus providing a high density of active sites even with a small mass. The EOG/CNF scaffold further renders the high conductivity in the catalytic structure. Combined, this novel structure, with high sulfur loading and high sulfur fraction, leads to high-performance sulfur cathodes toward a practical LSB technology. 
    more » « less