skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bernuzzi, Sebastiano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the details ofr-process nucleosynthesis in binary neutron star merger (BNSM) ejecta is key to interpreting kilonova observations and identifying the role of BNSMs in the origin of heavy elements. We present a self-consistent, two-dimensional, ray-by-ray radiation-hydrodynamic evolution of BNSM ejecta with an online nuclear network (NN) up to a timescale of days. For the first time, an initial numerical relativity ejecta profile composed of the dynamical component and spiral-wave and disk winds is evolved including detailedr-process reactions and nuclear heating effects. A simple model for the jet energy deposition is also included. Our simulation highlights that the common approach of relating in postprocessing the final nucleosynthesis yields to the initial thermodynamic profile of the ejecta can lead to inaccurate predictions. Moreover, we find that neglecting the details of the radiation-hydrodynamic evolution of the ejecta in nuclear calculations can introduce deviations of up to 1 order of magnitude in the final abundances of several elements, including very light and secondr-process peak elements. The presence of a jet affects element production only in the innermost part of the polar ejecta, and it does not alter the global nucleosynthesis results. Overall, our analysis shows that employing an online NN improves the reliability of nucleosynthesis and kilonova light-curve predictions. 
    more » « less
  2. Context. Multi-messenger observations of binary neutron star mergers can provide information on the neutron star’s equation of state (EOS) above the nuclear saturation density by directly constraining the mass-radius diagram. Aims. We present a Bayesian framework for joint and coherent analyses of multi-messenger binary neutron star signals. As a first application, we analyze the gravitational-wave GW170817 and the kilonova (kN) AT2017gfo data. These results are then combined with the most recent X-ray pulsar analyses of PSR J0030+0451 and PSR J0740+6620 to obtain new EOS constraints. Methods. We extend the bajes infrastructure with a joint likelihood for multiple datasets, support for various semi-analytical kN models, and numerical-relativity (NR)-informed relations for the mass ejecta, as well as a technique to include and marginalize over modeling uncertainties. The analysis of GW170817 used theTEOBResumSeffective-one-body waveform template to model the gravitational-wave signal. The analysis of AT2017gfo used a baseline multicomponent spherically symmetric model for the kN light curves. Various constraints on the mass-radius diagram and neutron star properties were then obtained by resampling over a set of ten million parameterized EOSs, which was built under minimal assumptions (general relativity and causality). Results. We find that a joint and coherent approach improves the inference of the extrinsic parameters (distance) and, among the intrinsic parameters, the mass ratio. The inclusion of NR-informed relations marks a strong improvement over the case in which an agnostic prior is used on the intrinsic parameters. Comparing Bayes factors, we find that the two observations are better explained by the common source hypothesis only by assuming NR-informed relations. These relations break some of the degeneracies in the employed kN models. The EOS inference folding-in PSR J0952-0607 minimum-maximum mass, PSR J0030+0451 and PSR J0740+6620 data constrains, among other quantities, the neutron star radius toR1.4TOV= 12.30− 0.56+ 0.81km(R1.4TOV= 13.20− 0.90+ 0.91km) and the maximum mass toMmaxTOV= 2.28− 0.17+ 0.25M(MmaxTOV= 2.32− 0.19+ 0.30M), where the ST+PDT (PDT-U) analysis of Vinciguerra et al. (2024, ApJ, 961, 62) for PSR J0030+0451 was employed. Hence, the systematics on the PSR J0030+0451 data reduction currently dominate the mass-radius diagram constraints. Conclusions. We conclude that bajes delivers robust analyses in line with other state-of-the-art results in the literature. Strong EOS constraints are provided by pulsars observations, albeit with large systematics in some cases. Current gravitational-wave constraints are compatible with pulsar constraints and can further improve the latter. 
    more » « less
  3. Abstract We study mass ejection from a binary neutron star merger producing a long-lived massive neutron star remnant with general-relativistic neutrino-radiation hydrodynamics simulations. In addition to outflows generated by shocks and tidal torques during and shortly after the merger, we observe the appearance of a wind driven by spiral density waves in the disk. This spiral-wave-driven outflow is predominantly located close to the disk orbital plane and have a broad distribution of electron fractions. At higher latitudes, a high electron-fraction wind is driven by neutrino radiation. The combined nucleosynthesis yields from all the ejecta components is in good agreement with Solar abundance measurements. 
    more » « less
  4. Abstract We present a 3D general-relativistic magnetohydrodynamic simulation of a short-lived neutron star remnant formed in the aftermath of a binary neutron star merger. The simulation uses an M1 neutrino transport scheme to track neutrino–matter interactions and is well suited to studying the resulting nucleosynthesis and kilonova emission. A magnetized wind is driven from the remnant and ejects neutron-rich material at a quasi-steady-state rate of 0.8 × 10−1Ms−1. We find that the ejecta in our simulations underproducer-process abundances beyond the secondr-process peak. For sufficiently long-lived remnants, these outflowsalonecan produce blue kilonovae, including the blue kilonova component observed for AT2017gfo. 
    more » « less
  5. ABSTRACT We present a systematic numerical relativity study of the impact of different physics input and grid resolution in binary neutron star mergers. We compare simulations employing a neutrino leakage scheme, leakage plus M0 scheme, the M1 transport scheme, and pure hydrodynamics. Additionally, we examine the effect of a sub-grid scheme for turbulent viscosity. We find that the overall dynamics and thermodynamics of the remnant core are robust, implying that the maximum remnant density could be inferred from gravitational wave observations. Black hole collapse instead depends significantly on viscosity and grid resolution. Differently from recent work, we identify possible signatures of neutrino effects in the gravitational waves only at the highest resolutions considered; new high-resolution simulations will be thus required to build accurate gravitational wave templates to observe these effects. Different neutrino transport schemes impact significantly mass, geometry, and composition of the remnant’s disc and ejecta; M1 simulations show systematically larger proton fractions, reaching maximum values larger than 0.4. r-process nucleosynthesis yields reflect the different ejecta compositions; they are in agreement and reproduce residual solar abundances only if M0 or M1 neutrino transport schemes are adopted. We compute kilonova light curves using spherically-symmetric radiation-hydrodynamics evolutions up to 15 d post-merger, finding that they are mostly sensitive to the ejecta mass and electron fraction; accounting for multiple ejecta components appears necessary for reliable light curve predictions. We conclude that advanced neutrino schemes and resolutions higher than current standards are essential for robust long-term evolutions and detailed astrophysical predictions. 
    more » « less