Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract There are few observed high-mass X-ray binaries (HMXBs) that harbor massive black holes (BHs), and none are likely to result in a binary black hole (BBH) that merges within a Hubble time; however, we know that massive merging BBHs exist from gravitational-wave (GW) observations. We investigate the role that X-ray and GW observational selection effects play in determining the properties of their respective detected binary populations. We find that, as a result of selection effects, detectable HMXBs and detectable BBHs form at different redshifts and metallicities, with detectable HMXBs forming at much lower redshifts and higher metallicities than detectable BBHs. We also find disparities in the mass distributions of these populations, with detectable merging BBH progenitors pulling to higher component masses relative to the full detectable HMXB population. Fewer than 3% of detectable HMXBs host BHs >35M⊙in our simulated populations. Furthermore, we find the probability that a detectable HMXB will merge as a BBH system within a Hubble time is ≃0.6%. Thus, it is unsurprising that no currently observed HMXB is predicted to form a merging BBH with high probability.more » « less
-
Abstract Gravitational-wave observations of binary black hole (BBH) systems point to black hole spin magnitudes being relatively low. These measurements appear in tension with high spin measurements for high-mass X-ray binaries (HMXBs). We use grids of MESA simulations combined with the rapid population-synthesis code COSMIC to examine the origin of these two binary populations. It has been suggested that Case-A mass transfer while both stars are on the main sequence can form high-spin BHs in HMXBs. Assuming this formation channel, we show that depending on the critical mass ratios for the stability of mass transfer, 48%–100% of these Case-A HMXBs merge during the common-envelope phase and up to 42% result in binaries too wide to merge within a Hubble time. Both MESA and COSMIC show that high-spin HMXBs formed through Case-A mass transfer can only form merging BBHs within a small parameter space where mass transfer can lead to enough orbital shrinkage to merge within a Hubble time. We find that only up to 11% of these Case-A HMXBs result in BBH mergers, and at most 20% of BBH mergers came from Case-A HMXBs. Therefore, it is not surprising that these two spin distributions are observed to be different.more » « less