skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Juzek, M K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In 2016, 10 universities launched a Networked Improvement Community (NIC) aimed at increasing the number of scholars from Alliances for Graduate Education and the Professoriate (AGEP) populations entering science, technology, engineering, and mathematics (STEM) faculty careers. NICs bring together stakeholders focused on a common goal to accelerate innovation through structured, ongoing intervention development, implementation, and refinement. We theorized a NIC organizational structure would aid understandings of a complex problem in different contexts and accelerate opportunities to develop and improve interventions to address the problem. A distinctive feature of this NIC is its diverse institutional composition of public and private, predominantly white institutions, a historically Black university, a Hispanic-serving institution, and land grant institutions located across eight states and Washington, DC, United States. NIC members hold different positions within their institutions and have access to varied levers of change. Among the many lessons learned through this community case study, analyzing and addressing failed strategies is as equally important to a healthy NIC as is sharing learning from successful interventions. We initially relied on pre-existing relationships and assumptions about how we would work together, rather than making explicit how the NIC would develop, establish norms, understand common processes, and manage changing relationships. We had varied understandings of the depth of campus differences, sometimes resulting in frustrations about the disparate progress on goals. NIC structures require significant engagement with the group, often more intensive than traditional multi-institution organizational structures. They require time to develop and ongoing maintenance in order to advance the work. We continue to reevaluate our model for leadership, climate, diversity, conflict resolution, engagement, decision-making, roles, and data, leading to increased investment in the success of all NIC institutions. Our NIC has evolved from the traditional NIC model to become the Center for the Integration of Research, Teaching and Learning (CIRTL) AGEP NIC model with five key characteristics: (1) A well-specified aim, (2) An understanding of systems, including a variety of contexts and different organizations, (3) A culture and practice of shared leadership and inclusivity, (4) The use of data reflecting different institutional contexts, and (5) The ability to accelerate infrastructure and interventions. We conclude with recommendations for those considering developing a NIC to promote diversity, equity, and inclusion efforts. 
    more » « less
  2. Free, publicly-accessible full text available September 1, 2026
  3. This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  5. Top-quark pair production is observed in lead–lead ( Pb + Pb ) collisions at s NN = 5.02 TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb 1 . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is σ t t ¯ = 3.6 0.9 + 1.0 ( stat ) 0.5 + 0.8 ( syst ) μ b , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  6. A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ b b ¯ ) and charm quarks (H→$$ c\overline{c} $$ c c ¯ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ s = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ b b ¯ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ c c ¯ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ b b ¯ andH→$$ c\overline{c} $$ c c ¯ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κcb|) to be less than 3.6 at 95% confidence level. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided. 
    more » « less
    Free, publicly-accessible full text available March 6, 2026