Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Societal Impact StatementAgricultural practices have had a negative impact on the physical, chemical, and biological components of soil. Perennial cropping systems that facilitate positive soil microbial interactions could not only rebuild soils but also sustain productivity through expected variations in environmental conditions. Here, we show the presence of arbuscular mycorrhizal (AM) fungi, soil symbionts that can improve host performance and soil health, increased the growth of intermediate wheatgrass, a novel perennial grain crop, in populations that have been increasingly bred for desirable agricultural characteristics. The right pairing of intermediate wheatgrass and a beneficial AM fungal community could lead to more sustainable agroecosystems. SummaryIntermediate wheatgrass (IWG) is a novel perennial grain that can provide many soil health benefits in agroecosystems; however, little is known about how selection for agronomic traits has impacted interactions with soil biota. Here, we assess how the selection for agronomic traits in IWG has impacted its relationship with arbuscular mycorrhizal (AM) fungi.First, growth response to AM fungi was compared across five generations of IWG with varying degrees of selection. Second, variation in AM fungal responsiveness was compared among genets of IWG individuals within a more advanced generation. Finally, a meta‐analysis was performed on all published studies exploring AM fungal inocula effects on IWG performance to increase understanding of selection effects.AM fungal responsiveness increased with selection for agronomic traits, responsiveness varied among genets in the advanced generation, and a majority of genets performed better in the presence of AM fungi. The meta‐analysis supported the findings that AM fungal responsiveness has increased with selection in IWG.Further studies are needed to realize the combined potential soil health and sustainability benefits of IWG and AM fungi, including assessment of symbiotic benefits beyond biomass production, identification of IWG traits correlated with responsiveness, and characterization of AM fungal community response to IWG.more » « lessFree, publicly-accessible full text available May 1, 2026
-
IntroductionClimate change and plant biodiversity loss have large impacts on terrestrial ecosystem function, with the soil microbiome being primary mediators of these effects. The soil microbiome is a complex system, consisting of multiple functional groups with contrasting life histories. Most studies of climate forces and plant biodiversity effects on microbiome consider the perturbations and the microbial functional groups in isolation preventing us from understanding the full picture of the relative and differential impacts of perturbations on microbial functional groups. MethodsWe measured changes in multiple microbial communities with different functionality, including plant mutualists and pathogens, after three growing seasons in a full-factorial experiment manipulating precipitation (50%, 150% of ambient), plant diversity, and plant composition. Using amplicon sequencing to characterize the response of fungi, arbuscular mycorrhizal fungi, bacteria and oomycetes, and we found that composition of all microbial groups differentiated strongly between precipitation treatments. ResultsOomycete and bacterial diversity increased with 150% precipitation, while AM and saprotroph fungal diversity decreased. Microbial differentiation in response to plant family and plant species composition was stronger after the third growing season than observed after year one. However, microbial response to plant species richness was weaker in year three. Microbiome response to plant composition was largely independent of the response to precipitation, except for oomycetes, which had greater response to plant composition in high precipitation. DiscussionThese findings build upon prior findings that these microbial community members differentially respond to plant community compositional treatments, by measuring the response over 3 years and with the addition of precipitation treatments. We find that both changes in climate and plant composition can drive major differences in soil microbiome composition, which can feed back on plant community structure and alter ecosystem function.more » « lessFree, publicly-accessible full text available January 31, 2026
-
Abstract Many of the disturbance‐sensitive, late successional plant species in grasslands respond to arbuscular mycorrhizal (AM) fungi more positively via growth and establishment than plants that readily establish in disturbed areas (i.e. early successional species). Inoculation with AM fungi can therefore aid the establishment of late successional species in disturbed areas. If the differential benefit of AM fungi to late versus early successional plants is context‐dependent, however, this advantage could be diminished in high phosphorus (P) post‐agricultural soils or in future climates with altered precipitation.In this greenhouse experiment, we tested if late successional plant species are less plastic in their reliance on AM fungi than early successional plants by growing 17 plant species of different successional status (9 early and 8 late successional) in full factorial combinations of inoculated or uninoculated with AM fungi, with ambient or high P levels, and with low or high levels of water.AM fungi positively affected the biomass of the 17 grassland plant species, but across all environments, late successional plant species generally responded more positively to AM fungi than early successional plants species.AM fungal growth promotion and change in below‐ground biomass allocation was generally diminished with P fertilizer across all plant species, and while there was significant variation among plant species in the sensitivity of AM fungal responsiveness to P fertilization, this differential sensitivity was not predicted by plant successional status.The role of AM fungi in plant growth promotion was not generally altered by variation in watering, however late successional plant species allocated a greater proportion of their biomass below‐ground in response to AM fungi in low versus high water conditions.Synthesis. Overall greater responsiveness to arbuscular mycorrhizal (AM) fungi by late successional species is consistent with an important role of AM fungi in plant succession, even while AM fungi are less impactful overall in high P soils. However, the increase in responsiveness of below‐ground allocation of late successional species to AM fungi in low water conditions suggests that successional dynamics may be more dependent on AM fungi in future climates that feature greater propensity for drought.more » « lessFree, publicly-accessible full text available October 15, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Abstract Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Abstract The latitudinal diversity gradient (LDG) dominates global patterns of diversity1,2, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset3to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography4—namely area and isolation—contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization. However, plant species with mutualists are underrepresented on islands, and we find that this plant mutualism filter explains more variation in the island species deficit than abiotic factors. In particular, plant species that require animal pollinators or microbial mutualists such as arbuscular mycorrhizal fungi contribute disproportionately to the island species deficit near the Equator, with contributions decreasing with distance from the Equator. Plant mutualist filters on species richness are particularly strong at low absolute latitudes where mainland richness is highest, weakening the LDG of oceanic islands. These results provide empirical evidence that mutualisms, habitat heterogeneity and dispersal are key to the maintenance of high tropical plant diversity and mediate the biogeographic patterns of plant diversity on Earth.more » « less
-
Plant diversity and grasses increase root biomass in a rainfall and grassland diversity manipulationThe loss of plant productivity with declining diversity is well established, exceeding other global change drivers including drought. These patterns are most clearly established for aboveground productivity, it remains poorly understood whether productivity increases associated with diversity are replicated belowground. To address this gap, we established a plant diversity-manipulation experiment in 2018. It is a full factorial manipulation of plant species richness and community composition, and precipitation. Three and five years post-establishment, two bulk soil cores (20cm depth) were collected and composited from each plot and were processed for roots to determine belowground biomass as root standing crop. We observed a strong positive relationship between richness and aboveground production and belowground biomass, generating positive combined above and belowground with diversity. Root standing crop increased 1.4-fold from years three to five. Grass communities produced more root biomass (monoculture mean 463.9 ± 410.3g m−2), and the magnitude of the relationship between richness and root standing crop was greatest within those communities. Legume communities produced the fewest roots (monoculture mean 212.2 ± 155.1g m−2), and belowground standing crop was not affected by diversity. Root standing crops in year three were 1.8 times higher under low precipitation conditions, while in year five we observed comparable root standing crops between precipitation treatments. Plant family was a strong mediator of increased belowground biomass observed with diversity, with single family grass and aster families generating 1.7 times greater root standing crops in six compared to single species communities, relationships between diversity and aboveground production were consistently observed in both single-family and multiple family communities. Diverse communities with species from multiple families generated only 1.3 times the root standing crop compared to monoculture average root biomass. We surprisingly observe diverse single family communities can generate increases in root standing crops that exceed those generated by diverse multiple family communities, highlighting the importance of plant richness within plant family for a given community. These patterns have potential implications for understanding the interactions of multiple global change drivers as changes in both precipitation and plant community composition do alter whether plant production aboveground is translated belowground biomass.more » « less
-
This paper investigates the response of five tomato and five pepper varieties to native arbuscular mycorrhizal (AM) fungal inoculation in an organic farming system. The field experiment was conducted across a growing season at a working organic farm in Lawrence, KS, USA. The researchers hypothesized that native AM fungi inoculation would improve crop biomass production for both crop species, but that the magnitude of response would depend on crop cultivar. The results showed that both crops were significantly positively affected by inoculation. AM fungal inoculation consistently improved total pepper biomass throughout the experiment (range of +2% to +8% depending on the harvest date), with a +3.7% improvement at the final harvest for inoculated plants. An interaction between pepper variety and inoculation treatment was sometimes observed, indicating that some pepper varieties were more responsive to AM fungi than others. Beginning at the first harvest, tomatoes showed a consistent positive response to AM fungal inoculation among varieties. Across the experiment, AM fungi-inoculated tomatoes had +10% greater fruit biomass, which was driven by a +20% increase in fruit number. The study highlights the potential benefits of using native AM fungi as a soil amendment in organic farmed soils to improve pepper and tomato productivity.more » « less
-
Abstract Productivity benefits from diversity can arise when compatible pathogen hosts are buffered by unrelated neighbors, diluting pathogen impacts. However, the generality of pathogen dilution has been controversial and rarely tested within biodiversity manipulations. Here, we test whether soil pathogen dilution generates diversity- productivity relationships using a field biodiversity-manipulation experiment, greenhouse assays, and feedback modeling. We find that the accumulation of specialist pathogens in monocultures decreases host plant yields and that pathogen dilution predicts plant productivity gains derived from diversity. Pathogen specialization predicts the strength of the negative feedback between plant species in greenhouse assays. These feedbacks significantly predict the overyielding measured in the field the following year. This relationship strengthens when accounting for the expected dilution of pathogens in mixtures. Using a feedback model, we corroborate that pathogen dilution drives overyielding. Combined empirical and theoretical evidence indicate that specialist pathogen dilution generates overyielding and suggests that the risk of losing productivity benefits from diversity may be highest where environmental change decouples plant-microbe interactions.more » « less
-
Although several studies have shown increased native plant establishment with native microbe soil amendments, few studies have investigated how microbes can alter seedling recruitment and establishment in the presence of a non-native competitor. In this study, the effect of microbial communities on seedling biomass and diversity was assessed by seeding pots with both native prairie seeds and a non-native grass that commonly invades US grassland restorations, Setaria faberi. Soil in the pots was inoculated with whole soil collections from ex-arable land, late successional arbuscular mycorrhizal (AM) fungi isolated from a nearby tallgrass prairie, with both prairie AM fungi and ex-arable whole soil, or with a sterile soil (control). We hypothesized (1) late successional plants would benefit from native AM fungi, (2) that non-native plants would outcompete native plants in ex-arable soils, and (3) early successional plants would be unresponsive to microbes. Overall, native plant abundance, late successional plant abundance, and total diversity were greatest in the native AM fungi+ ex-arable soil treatment. These increases led to decreased abundance of the non-native grass S. faberi. These results highlight the importance of late successional native microbes on native seed establishment and demonstrate that microbes can be harnessed to improve both plant community diversity and resistance to invasion during the nascent stages of restoration.more » « less